

客户物品技术规范

克朗斯容器规范

目录

1	概述	}		4			
	1.1	基本信	信息	4			
	1.2	容器的	的倾角	4			
2	玻璃	玻璃容器					
	2.1	旋转对	才称的圆柱形容器	6			
		2.1.1	样品图纸 – 示例	6			
		2.1.2	形状/几何形状与尺寸精度	6			
	2.2	非旋转	专对称的容器(特殊形状容器)	g			
		2.2.1	样品图纸 – 示例	g			
		2.2.2	矩阵预览图	10			
		2.2.3	形状/几何形状与尺寸精度	10			
3	PET	容器		14			
	3.1	旋转对	才称的圆柱形容器	14			
		3.1.1	样品图纸 – 示例	14			
		3.1.2	形状/几何形状与尺寸精度	14			
	3.2	非旋转	专对称的容器(特殊形状容器)	18			
		3.2.1	矩阵预览图	18			
		3.2.2	样品图纸 – 示例	19			
		3.2.3	形状/几何形状与尺寸精度	19			
4	塑料	容器(天	E PET)	24			
	4.1	旋转对	才称的圆柱形容器	24			
		4.1.1	样品图纸 – 示例 1	24			
		4.1.2	样品图纸 – 示例 2	25			
		4.1.3	形状/几何形状与尺寸精度	25			
	4.2	非旋转	专对称的容器(特殊形状容器)	26			
		4.2.1	矩阵预览图	26			
		4.2.2	样品图纸 – 示例 1	28			
		4.2.3	样品图纸 – 示例 2	29			
		4.2.4	形状/几何形状与尺寸精度	29			
5	罐			31			
	5.1	旋转对	才称的圆柱形容器	31			
		5.1.1	样品图纸 – 已封盖饮料易拉罐的示例 1a	31			
		5.1.2		32			
		5.1.3	样品图纸 – 已封盖罐头易拉罐的示例 2a	33			
		5.1.4	样品图纸 – 已封盖罐头易拉罐的示例 2b	34			
		5.1.5	样品图纸 – 示例 3:其他易拉罐	35			
		5.1.6	形状/几何形状与尺寸精度	35			
6	定位	条几何邢	影状	38			

TD10026397 ZH 01 目录

目录

6.1	侧壁定位	侧壁定位条			
	6.1.1	侧壁定位条(凹式)	38		
	6.1.2	侧壁定位条(凸式)	38		
6.2	玻璃容	器的瓶底定位条	39		
6.3	塑料容	器的瓶底定位条	40		

TD10026397 ZH 01 目录 3

1 概述

1.1 基本信息

本技术规范列明了灌装及包装设备对于容器的要求,且不会替代其他任何技术规范。尤其是克朗斯的 PET 一次性容器技术规范不会被替代,因其规定了克朗斯 Contiform 所生产容器的特性!

本技术规范载明的尺寸及公差是用于规划各种机器的最低要求。如与本技术规范有偏差,则必须提前通知专业部 门。

涉及到的参数如下:

- 形状/几何形状与尺寸精度
- 物理特性
- 瓶颈几何形状/瓶口

本技术规范适用于以下类型的容器:

■ 玻璃容器:

旋转对称的圆柱形容器和特殊形状容器

■ PET 容器:

旋转对称的圆柱形容器和特殊形状容器

■ 塑料容器:

旋转对称的圆柱形容器和特殊形状容器

超

本技术规范应被理解为容器图纸的补充说明。本技术规范不能代替客户的容器图纸!

如果超出本技术规范所列明的尺寸、公差以及其他规定,则请咨询克朗斯!

只能结合原始的样品材料对与容器相关的部件进行规划。该样品材料由客户提供。尤其是在容器供应商不同的情况下(样品材料必须由各个供应商提供)。

1.2 容器的倾角

所有容器的倾角均用 k 来表示。它通过容器的重心 S 和站立半径(= 站立直径 SD/2)得出。

→ 见下方图纸 (可作为所有容器类型的参考)

容器的倾角 k 应至少为 10°。

TD10026397 ZH 01 1.1 基本信息 4.1 基本信息 4.1

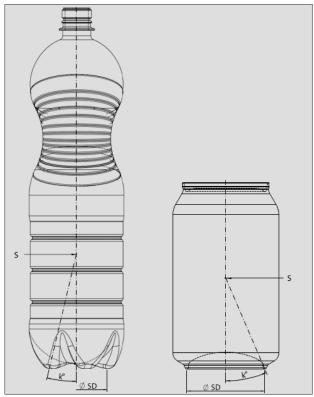


图 1: 示例: PET 容器、饮料易拉罐

S = 重心

K = 倾角

Ø SD = 站立直径

TD10026397 ZH 01 1.2 容器的倾角

2 玻璃容器

2.1 旋转对称的圆柱形容器

2.1.1 样品图纸 - 示例

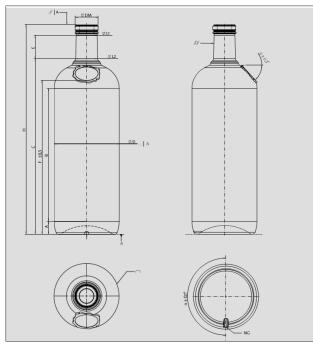


图 2: 测定尺寸的玻璃瓶

// = 平面平行

Ø DM = 瓶口直径

Ø L1 = 瓶颈头端直径

Ø L2 = 瓶颈尾端直径

Ø D = 容器直径

H = 容器高度

E = 瓶颈区域高度

C = 瓶颈区域尾端的高度

F = 徽标高度

B = 贴标区高度

A = 贴标区尾端的高度

丄 = 垂直

/o/ = 圆柱形

β = 倾斜度

α = 定位条位置

∩ = 线条

NG = 单独图纸决定的定位条几何形状

2.1.2 形状/几何形状与尺寸精度

DIN 6129-1 规定的极限偏差(单位均为 mm)

高度

		允许 总高			允许
最低	至	偏差 [mm]	最低	至	偏差 [mm]
-	50	± 0.8	250	300	± 1.8
50	75	± 0.9	300	325	± 1.9
75	100	± 1.0	325	350	± 2.0
100	125	± 1.1	350	375	± 2.1
125	150	± 1.2	375	400	± 2.2
150	175	± 1.3	400	425	± 2.3
175	200	± 1.4	425	450	± 2.4
200	225	± 1.5	450	475	± 2.5
225	250	± 1.6	475	500	± 2.6

计算出来的允许偏差 [mm],针对 H:±(0.6 + 0.004 x H);计算出的数值四舍五入到小数点后一位。

容器直径

			容器直径 D		允许
最低	至	偏差 [mm]	最低	至	偏差 [mm]
-	25	± 0.8	100	108	± 1.8
25	33	± 0.9	108	116.5	± 1.9
33	41.5	± 1.0	116.5	125	± 2.0
41.5	50	± 1.1	125	133	± 2.1
50	58	± 1.2	133	141.5	± 2.2
58	66.5	± 1.3	141.5	150	± 2.3
66.5	75	± 1.4	150	158	± 2.4
75	83	± 1.5	158	166.5	± 2.5
83	91.5	± 1.6	166.5	175	± 2.6
91.5	100	± 1.7	175	183	± 2.7

计算出来的允许偏差 [mm],针对 $D:\pm$ $(0.5 + 0.012 \times D)$;计算出的数值四舍五入到小数点后一位。对于椭圆和多边形的横截面,则总是通过横截面较宽的一边来进行计算。

瓶颈几何形状

必须指定瓶颈头端(尺寸 C)和瓶颈高度(尺寸 E)以便规划夹颈输送装置。

名称	计量单位	允许偏差 [mm]
瓶颈直径 – 头端	Ø L1	± 0.2
瓶颈直径 – 尾端	Ø L2	± 0.2

对于深锥环绕标,锥度的最大偏差不得超过 0.1°。

定位条位置

名称	计量单位	允许偏差 [mm]
相对于徽标的定位条位置	α	± 0.1°

徽标

在瓶肩区域,徽标突出于直径的最大程度必须小于 0.75 mm。这适用于正面和背面粘贴的徽标。

名称	计量单位	允许偏差 [mm]
徽标倾斜度	β	± 0.3°

平面平行

注意章节 2.1.1 2.1.1 [▶ 6] 内样品图纸中的"平面平行"

瓶口]	允许偏差 [mm]	
最低	至	
-	40	直径的 2%
40	60	0.9
60	-	1.0

垂直

注意章节 2.1.1 2.1.1 [▶ 6] 内样品图纸中的"垂直"

总	高度 H	允许的
最低	至	垂直轴偏差 [mm]
0	120	± 0.8
120	140	± 0.9
140	160	± 1.0
160	180	± 1.1
180	200	± 1.2
200	220	± 1.3
220	240	± 1.4
240	260	± 1.5
260	280	± 1.6
280	300	± 1.7
300	320	± 1.8
320	340	± 1.9
340	360	± 2.0
360	380	± 2.1
380	400	± 2.2
400	420	± 2.3
420	440	± 2.4
440	460	± 2.5
460	480	± 2.6
480	500	± 2.7

轴偏差的计算公式:

H 大于 120:(0.3 + 0.01 x H)x 0.5;计算出的数值四舍五入到小数点后一位。(容器高度 H 包含了瓶口,参见章节 2.1.1 2.1.1 [\triangleright 6] 中的图示)

圆柱形/线条

在贴标区,圆柱形与容器标称尺寸的偏差不得超过 0.3 mm。

额外要求

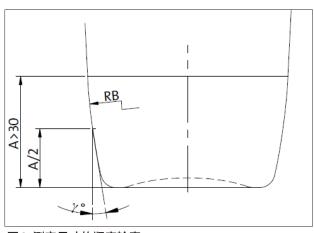


图 3: 测定尺寸的瓶底轮廓

如果瓶底高度 A 大于 30 mm,则必须指定半径 RB。 如果瓶底为锥形轮廓且瓶底高度 A > 30 mm,则必须基于瓶底半高(A/2)计算角度 γ° 。

表面和表面特性

对于钢化玻璃容器或漫射表面(包括玻璃的凸纹或凹纹)也需要注意上述提示,以便能够进行可能的试验。此外,容器颜色作为规划标准也十分重要。

瓶口

瓶口的形状和公差按照 DIN 6094 标准执行。如与此标准有偏差则必须单独说明。 如使用客户定制的瓶口,则必须附上相应的图纸。

瓶底几何形状

对于带有瓶底定位条或侧壁定位条(凸/凹)(在瓶底区域也有凸纹或凹纹)的容器,则必须为这些容器专门标注尺寸并指定相应的公差(参见章节 6 6 [▶ 38])。

其他要求

对于尺寸 E + 瓶口高度 M < 40 mm 的封盖标签,则必须咨询贴标技术部门。如果标签无保护,则必须咨询克朗斯的专业部门。如果标签无保护,则标签会受损。

2.2 非旋转对称的容器(特殊形状容器)

2.2.1 样品图纸 - 示例

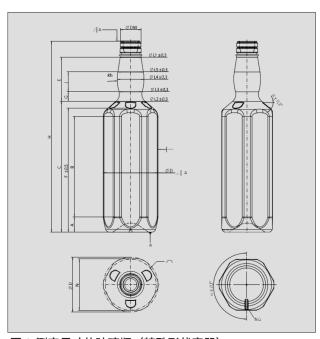
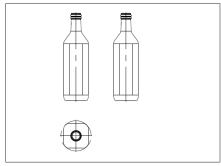



图 4: 测定尺寸的玻璃瓶(特殊形状容器)

- // = 平面平行
- Ø DM = 瓶口直径
- Ø L1 = 瓶颈头端直径
- Ø L2 = 瓶颈尾端直径
- Ø L1 L5 = 相关的瓶颈直径
- Rh = 相关的瓶颈半径
- G、J、E = 相关的瓶颈高度
- Ø D = 容器直径
- N = 容器内径
- H = 容器高度
- C = 瓶颈区域尾端的高度
- F = 徽标高度
- B = 贴标区高度
- A = 贴标区尾端的高度
- = 直线
- 上 = 垂直
- β = 倾斜度
- α = 定位条位置
- ∩ = 线条
- NG = 单独图纸决定的定位条几何形状

2.2.2 矩阵预览图

以下是各种特殊形状容器的概览图:

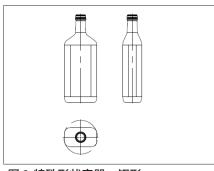


图 6: 特殊形状容器 - 矩形

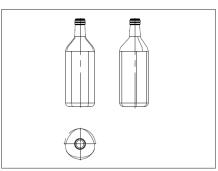


图 7: 特殊形状容器 - 三角形

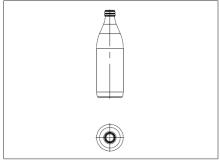


图 8: 特殊形状容器 - 圆形

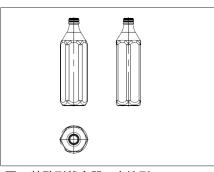


图 9: 特殊形状容器 - 六边形

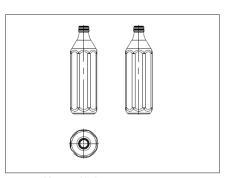


图 10: 特殊形状容器 - 八边形

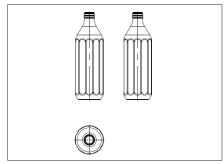


图 11: 特殊形状容器 - 多边形

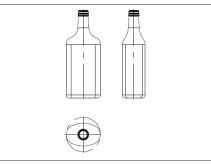


图 12: 特殊形状容器 - 椭圆形

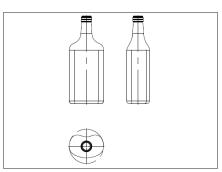


图 13: 特殊形状容器 - 肾形

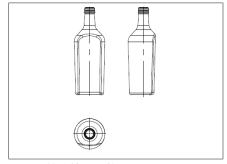


图 14: 其他特殊形状

2.2.3 形状/几何形状与尺寸精度

DIN 6129-1 规定的极限偏差(单位均为 mm)

高度

		允许	总高度 H		允许
最低	至	偏差 [mm]	最低	至	偏差 [mm]
-	50	± 0.8	250	300	± 1.8
50	75	± 0.9	300	325	± 1.9
75	100	± 1.0	325	350	± 2.0
100	125	± 1.1	350	375	± 2.1
125	150	± 1.2	375	400	± 2.2
150	175	± 1.3	400	425	± 2.3
175	200	± 1.4	425	450	± 2.4
200	225	± 1.5	450	475	± 2.5
225	250	± 1.6	475	500	± 2.6

计算出来的允许偏差 [mm],针对 H: ± (0.6 + 0.004 x H); 计算出的数值四舍五入到小数点后一位。

容器直径

容器直径 D		允许		容器直径 D	允许
容器内径 N		偏差 [mm]	偏差 [mm] 容器内		偏差 [mm]
最低	至		最低	至	
-	25	± 0.8	100	108	± 1.8
25	33	± 0.9	108	116.5	± 1.9
33	41.5	± 1.0	116.5	125	± 2.0
41.5	50	± 1.1	125	133	± 2.1
50	58	± 1.2	133	141.5	± 2.2
58	66.5	± 1.3	141.5	150	± 2.3
66.5	75	± 1.4	150	158	± 2.4
75	83	± 1.5	158	166.5	± 2.5
83	91.5	± 1.6	166.5	175	± 2.6
91.5	100	± 1.7	175	183	± 2.7

计算出来的允许偏差 [mm],针对 $D:\pm$ $(0.5 + 0.012 \times D)$;计算出的数值四舍五入到小数点后一位。对于椭圆和多边形的横截面,则总是通过横截面较宽的一边来进行计算。

瓶颈几何形状

必须指定瓶颈头端(尺寸 C)和瓶颈高度(尺寸 E)以便规划夹颈输送装置。

名称	计量单位	允许偏差 [mm]
瓶颈直径 – 头端	Ø L1	± 0.3
瓶颈直径 – 尾端	Ø L2	± 0.3

对于深锥环绕标,锥度的最大偏差不得超过 0.1°。

定位条位置

名称	计量单位	允许偏差 [mm]
相对于徽标的定位条位置	α	± 0.1°

徽标

在瓶肩区域,徽标突出于直径的最大程度必须小于 0.75 mm。这适用于正面和背面粘贴的徽标。

) KRONES

名称	计量单位	允许偏差 [mm]
徽标倾斜度	β	± 0.3°

平面平行

注意章节 2.2.1 2.2.2 [▶9] 内样品图纸中的"平面平行"

瓶口直径 DM		允许偏差 [mm]
最低	至	
-	40	直径的 2%
40	60	0.9
60	-	1.0

垂直

注意章节 2.2.1 2.2.2 [▶9] 内样品图纸中的"垂直"

总高度 H		允许的
最低	至	垂直袖偏差 [mm]
0	120	± 0.8
120	140	± 0.9
140	160	± 1.0
160	180	± 1.1
180	200	± 1.2
200	220	± 1.3
220	240	± 1.4
240	260	± 1.5
260	280	± 1.6
280	300	± 1.7
300	320	± 1.8
320	340	± 1.9
340	360	± 2.0
360	380	± 2.1
380	400	± 2.2
400	420	± 2.3
420	440	± 2.4
440	460	± 2.5
460	480	± 2.6
480	500	± 2.7

轴偏差的计算公式:

H 大于 120:(0.3 + 0.01 x H)x 0.5;计算出的数值四舍五入到小数点后一位。(容器高度 H 包含了瓶口,参见章节 2.2.1 2.2.2 [\triangleright 9] 中的图示)

直线/线条

在贴标区,直线和线条与容器理想状态的偏差均不得超过 0.3 mm。

额外要求

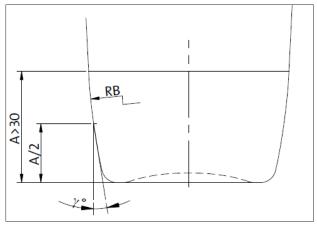


图 15: 测定尺寸的瓶底轮廓

如果瓶底高度 A 大于 30 mm,则必须指定半径 RB。 如果瓶底为锥形轮廓且瓶底高度 A > 30 mm,则必须基于瓶底半高(A/2)计算角度 y° 。

表面和表面特性

对于钢化玻璃容器或漫射表面(包括玻璃的凸纹或凹纹)也需要注意上述提示,以便能够进行可能的试验。此外,容器颜色作为规划标准也十分重要。

瓶底几何形状

对于带有瓶底定位条或侧壁定位条(凸/凹)(在瓶底区域也有凸纹或凹纹)的容器,则必须为这些容器专门标注尺寸并指定相应的公差(参见章节 6 6 [▶ 38])。

其他要求

对于弧形几何形状(参见章节 2.2.1 2.2.2 [▶9] 内样品图纸中的瓶颈几何形状),则必须指定尺寸,以完全确定外部几何形状(几何形状可再现)。

名称	计量单位	允许偏差 [mm]
	Ø L1	± 0.3
	Ø L2	± 0.3
	Ø L3	± 0.3
	Ø L4	± 0.3
	Ø L5	± 0.3

对于尺寸 E + 瓶口高度 M < 40 mm 的封盖标签,则必须咨询贴标技术部门。如果标签无保护,则必须咨询克朗斯的专业部门。如果标签无保护,则标签会受损。

3 PET 容器

3.1 旋转对称的圆柱形容器

3.1.1 样品图纸 - 示例

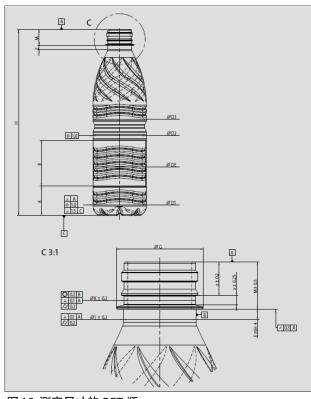


图 16: 测定尺寸的 PET 瓶

- // = 平面平行
- Ø DM = 瓶口直径
- Ø L1 = 瓶颈头端直径
- Ø L2 = 瓶颈尾端直径
- Ø D = 容器直径
- H = 容器高度
- E = 瓶颈区域高度
- C = 瓶颈区域尾端的高度
- F = 徽标高度
- B = 贴标区高度
- A = 贴标区尾端的高度
- 上 = 垂直
- /o/ = 圆柱形
- β = 倾斜度
- α = 定位条位置
- ∩ = 线条

NG = 单独图纸决定的定位条几何形状

3.1.2 形状/几何形状与尺寸精度

高度、容器直径和贴标直径

标称容积 [i]		高度 H [mm] 容器直径 D3 、 贴标直径 D [mm]	
最低	至	允许偏差 [mm]	
0	0.5	± 0.8	± 0.4
0.5	1.0	± 1.0	± 0.6
1.0		± 1.3	-0.7 +0.8

指定的公差基于未灌装的容器。

容器直径应至少为 45 mm。如容器直径超过 108 mm,则必须咨询克朗斯,以确保夹颈传送星轮和排出装置可对容器进行处理。

在灌装技术的范畴内(无菌灌装除外),以下 PET 容器高度适用于所有用途的加工:

≥ 150 mm: PET 容器的最小高度≤ 350 mm: PET 容器的最大高度

总是从容器口上边缘测量到容器底部下边缘。最小和最大容器的高度差不得超过 200 mm。

如超过了最小或最大容器高度,则可能要在达到下列数值的个别情况下对容器加工进行结构性检查:

- ≤ 370 mm 或
- ≥ 105 mm(适用于夹颈传送的一次性 PET)或
- ≥ 140 mm(底部传送的可重复使用 PET)

在这些数值范围外则无法加工。

瓶颈几何形状和瓶口

必须指定瓶颈头端(尺寸 C)和瓶颈高度(尺寸 E)以便规划夹颈输送装置。

瓶颈高度 E [mm]	允许偏差 [mm]
< 4	不允许
> 4	+ 0.3

如在瓶颈或瓶口区域内超出这些公差,则必须咨询克朗斯。

如使用不同的瓶口(其他高度、其他支撑环直径),则必须由克朗斯检查混合加工的可行性。如使用瓶夹插入器,则必须咨询包装技术部门。

导向直径

容器的导向直径应始终为容器上的最大直径,即使是在已耗尽所有公差的情况下。容器应有稳定的导向直径。 此导向直径的高度必须在 40 - 50 mm 之间。通过进行特别的工作,高度也可以在 30 - 40 mm 之间(在 10mm 的范围内与容器最大直径至少有一个接触点即可。)

如与给定值有偏差,则必须咨询包装技术部门。

平面平行

注意章节 3.1.1 3.1.1 [▶ 14] 内样品图纸中的"平面平行"

		允许的
最低	至	平面平行偏差 [mm]
-	40	直径的 2%
40	50	0.9

垂盲

注意章节 3.1.1 3.1.1 [▶ 14] 内样品图纸中的"垂直"

标称容积 [1]		允许的 垂直偏差 [mm]
最低	至	垂直偏差 [mm]
0	1.5	3.0
1.5	2.5	4.0
2.5		5.0

圆柱形/线条

在贴标区,圆柱形和线条与容器理想状态的偏差均不得超过 0.3 mm。

额外要求

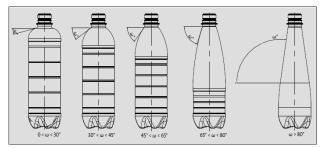


图 17: 容器类型

容器形状和可运输性

在空气输送机或包装机中,容器的可运输性主要取决于容器的形状,尤其是通过瓶肩角度 ω 表现出来的特征。 分为以下范围:

瓶肩角度 ω[°]		可运输性
最低	至	
0	30	严重受限
30	45	合格
45	65	非常好
65	80	受限
80		严重受限

表 1: 基于空气输送机:

瓶扇角度 ω[°]		是否可加工
最低	至	
0	30	使用隔板置入器时特殊放行 + 测试
0	30	使用瓶夹插入器时特殊放行
80		视觉上有缺陷的热缩包装件
80		使用全裹包式包装件时特殊放行

表 2: 基于 Variopac / Varioline 包装机:

联系人:包装技术部门

如瓶肩角度 ω < 30° 或 ω > 65° ,则必须咨询克朗斯。

根据瓶肩角度 ω ,瓶颈半径 Rh 和瓶颈高度 E 必须具备以下最小值:

瓶肩角度 ω[°]		瓶颈半径 Rh [mm]	瓶颈高度 E [mm]
最低	至		
	20	不允许	
20	25	> 1.0	> 6.0
25	35	> 1.0	> 5.0
35		> 1.0	> 4.5
35		> 1.5	> 4.0

稳定性

尤其是对于轻量型容器,必须注意空容器和已灌装容器是否具有足够的稳定性。即使是在侧向力的作用下,容器 也不得有剧烈变形。

热稳定性

对于灌装有碳酸水(8.0 - 0.5 + 0 g/l CO_2)的已封盖容器,在 38 °C(任意空气湿度)下保存 24 小时后,允许与标称尺寸有以下百分比尺寸偏差。

出现停机时继续加工容器:

由于容器尺寸的变化,停机超过 30 分钟后无法再进一步加工,或可加工性非常受限。这一点适用于整个设备 线。本技术规范不适用于手扣斗或类似物品。

标称容积 [i]		高度 H	容器直径 D、
最低	至		贴标直径 DE [mm]
0	1.5	3.0	4.0
1.5		3.5	5.0

凹槽

尺寸 T1、T2、T3	最小尺寸
T1 \ T3	10 mm
T2	8 mm

凹槽应保证两个瓶子不会相互挂住。

轴向压力负载(Top Load)

测量空容器直至折叠的垂直负载能力(Top Load)(最大负载能力,"peak load")。在此期间,活塞的移动速度应为 510 mm/min,以确保多次测量结果具备可比性。容器应承受 k x 140 N 的平均负载。

无气泡水的容器壁厚通常会更薄,针对此类应用,垂直负载能力(TopLoad)会有所降低。容器因此必须承受 $k \times 90 N$ 的平均负载,系数 k 的计算方式如下:

碳酸灌装物	Top Load(垂直负载能力)= k x 140 N	
无气泡水	Top Load(垂直负载能力)= k x 90 N	
系数 k 的计算方式	k = 样品瓶的重量 - 瓶口重量	
		按照表格的预坯重量 - 6 g

其他要求

- 对于装有含 CO。灌装物的 PET 容器,则必须指定环境温度。
- 对于尺寸 E + 瓶口高度 M < 40 mm 的封盖标签,则必须咨询贴标技术部门。
- 在容器灌装前后,必须将 PET 容器的几何形状提供给克朗斯,以便克朗斯对容器传送部件做出相应调整!

影响灌装高度的因素:

- 灌装机类型、功率、瓶颈几何形状、机器隔距、出口星轮和封盖机星轮的尺寸、碳酸化装置或氮气滴注器、 收缩过程中形成的鼓胀
- 不同机器对灌装高度的要求也不尽相同,也就是说灌装高度应尽可能高,在必要时也要尽可能低。同时要注意恰当的灌装高度。

粘性

根据"克朗斯粘性测量法",预坯/PET 瓶的粘性不得超过以下数值:

- 预坯 5 N
- 瓶子 15 N

容器上的残留物不得对开卷行为造成负面影响。瓶子不得粘连。

粘性的定义:参见预坯技术规范,有关粘性的附加数据表

底模

容器的各个接触面(足迹)必须具有 ≥ 6 mm 的直径。

如果接触面 < 6 mm,则无法在热缩通道内进行加工。

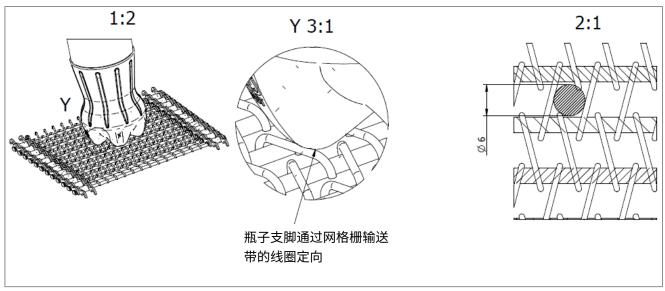


图 18: 接触面特性

粘性的定义:参见预坯技术规范,有关粘性的附加数据表

3.2 非旋转对称的容器(特殊形状容器)

3.2.1 矩阵预览图

以下是各种特殊形状容器的概览图

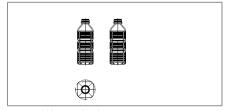


图 19: 特殊形状容器 - 方形

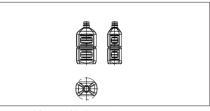


图 20: 特殊形状容器 - 矩形

图 21: 特殊形状容器 - 三角形

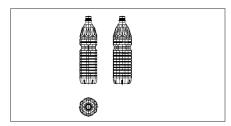


图 22: 特殊形状容器 - 六边形

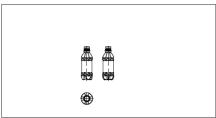


图 23: 特殊形状容器 - 八边形

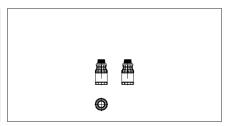


图 24: 特殊形状容器 - 多边形

图 25: 特殊形状容器 - 椭圆形

图 26: 特殊形状容器 - 肾形

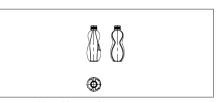


图 27: 其他特殊形状

3.2.2 样品图纸 - 示例

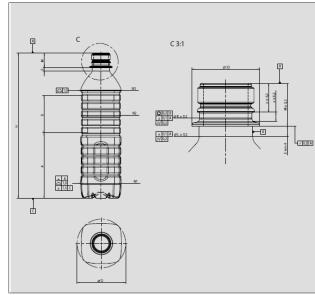


图 28: 测定尺寸的 PET 瓶 (特殊形状容器)

// = 平面平行

Ø G = 支撑环直径

Ø K = 瓶口槽的直径

Ø L1 = 瓶颈头端直径

Ø L2 = 瓶颈尾端直径

Ø D = 容器外径

Ø D = 容器内径

H = 容器高度

E = 瓶颈高度,支撑环

C = 瓶颈区域尾端的高度

B = 贴标区高度

A = 贴标区尾端的高度

∩ = 线条

M = 瓶口高度

= 直线

上 = 垂直

T1 - T3 = 凹槽

S = 瓶口槽的高度 Rh,瓶颈过渡处的半径

Rv = 封盖环的半径

Rt = 支撑环的半径

3.2.3 形状/几何形状与尺寸精度

高度、容器直径和贴标直径

标称容积 [i]			容器外径 D, 容器内径 N [mm]
最低	至	允许偏差 [mm]	
0	0.5	± 0.8	± 0.4
0.5	1.0	± 1.0	± 0.6
1.0		± 1.3	-0.7 +0.8

指定的公差基于未灌装的容器。

容器直径应至少为 45 mm。如容器直径超过 108 mm,则必须咨询克朗斯,以确保夹颈传送星轮和排出装置可对容器进行处理。

在灌装技术的范畴内(无菌灌装除外),以下 PET 容器高度适用于所有用途的加工:

- ≥ 150 mm (最小 PET 容器高度)
- ≤ 350 mm (最大 PET 容器高度)

总是从容器口上边缘测量到容器底部下边缘。最小和最大容器的高度差不得超过 200 mm。

如超过了最小或最大容器高度,则可能要在达到下列数值的个别情况下对容器加工进行结构性检查:

- ≤ 370 mm 或
- ≥ 105 mm(适用于夹颈传送的一次性 PET)或

■ ≥ 140 mm(底部传送的可重复使用 PET)

在这些数值范围外则无法加工。

瓶颈几何形状和瓶口

必须指定瓶颈头端(尺寸 C)和瓶颈高度(尺寸 E)以便规划夹颈输送装置。

瓶颈高度 E [mm]	允许偏差 [mm]
< 4	不允许
> 4	+ 0.3

如在瓶颈或瓶口区域内超出这些公差,则必须咨询克朗斯。

使用瓶夹插入器之前必须咨询包装技术部门。

如使用不同的瓶口(其他高度、其他支撑环直径),则必须由克朗斯检查混合加工的可行性。

导向直径

容器的导向直径应始终为容器上的最大直径,即使是在已耗尽所有公差的情况下。容器应有稳定的导向直径。此导向直径的高度必须在 40 - 50 mm 之间。通过进行特别的工作,高度也可以在 30 - 40 mm 之间。(在 10 mm 的范围内与容器最大直径至少有一个接触点即可。)

如与给定值有偏差,则必须咨询包装技术部门。

平面平行

注意章节 3.2.2 3.2.2 [▶ 19] 内样品图纸中的"平面平行"

		允许的
最低	至	平面平行偏差 [mm]
-	40	直径的 2%
40	50	0.9

垂直

注意章节 3.2.2 3.2.2 [▶ 19] 内样品图纸中的"垂直"

标称容积 [i]		允许的
最低	至	垂直轴偏差 [mm]
0	1.5	± 3.0
1.5	2.5	± 4.0
2.5		± 5.0

直线/线条

在贴标区,直线和线条与容器理想状态的偏差均不得超过 0.3 mm。

容器形状和可运输性的额外要求

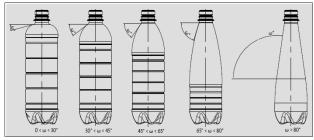


图 29: 容器类型

容器形状和可运输性

在空气输送机或包装机中,容器的可运输性主要取决于容器的形状,尤其是通过瓶肩角度 ω 表现出来的特征。分为以下范围:

瓶肩角度 ω[°]		可运输性
最低	至	
0	30	严重受限
30	45	合格
45	65	非常好
65	80	受限
80		严重受限

表 3: 基于空气输送机:

瓶肩角度 ω[°]		是否可加工
最低	至	
0	30	使用隔板置入器时特殊放行 + 测试
0	30	使用瓶夹插入器时特殊放行
80		视觉上有缺陷的热缩包装件
80		使用全裹包式包装件时特殊放行

表 4: 基于 Variopac / Varioline 包装机:

联系人:包装技术部门

如瓶肩角度 $\omega < 0^{\circ}$ 或 $\omega > 65^{\circ}$,则必须咨询克朗斯。

根据瓶肩角度 ω ,瓶颈半径 Rh 和瓶颈高度 E 必须具备以下最小值:

瓶肩角度 ω[°]		瓶颈半径 Rh [mm]	瓶颈高度 E [mm]
最低	至		
	20	不允许	
20	25	> 1.0	> 6.0
25	35	> 1.0	> 5.0
35		> 1.0	> 4.5
35		> 1.5	> 4.0

角半径

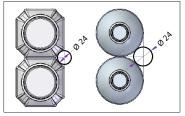


图 30: 角半径

为了使容器能够在 Variopac 包装机中加工,角半径必须如简图所示。否则请咨询包装技术部门。

稳定性

尤其是对于轻量型容器,必须注意空容器和已灌装容器是否具有足够的稳定性。即使是在侧向力的作用下,容器 也不得有剧烈变形。

热稳定性

对于灌装有碳酸水(8.0 - 0.5 + 0 g/l CO₂)的已封盖容器,在 38 °C(任意空气湿度)下保存 24 小时后,允许与标称尺寸有以下百分比尺寸偏差。出现停机时继续加工容器:由于容器尺寸的变化,停机超过 30 分钟后将无法再进一步加工,或可加工性非常受限。这一点适用于整个设备线。本技术规范不适用于手扣斗或类似物品。

标称容积 [i]		高度 H	容器外径 D, 容器内径 N
最低	至	允许偏差 [%]	
0	1.5	3.0	4.0
1.5		3.5	5.0

凹槽

尺寸 T1、T2、T3	最小尺寸
T1 · T3	10 mm
T2	8 mm

凹槽应保证两个瓶子不会相互挂住。

轴向压力负载(Top Load)

测量空容器直至折叠的垂直负载能力(Top Load)(最大负载能力,"peak load")。在此期间,活塞的移动速度应为 510 mm/min,以确保多次测量结果具备可比性。容器应承受 k x 140 N 的平均负载。

无气泡水的容器壁厚通常会更薄,针对此类应用,垂直负载能力(TopLoad)会有所降低。容器因此必须承受 $k \times 90 \ N$ 的平均负载,系数 $k \times 90 \ N$ 的平均负载,

碳酸灌装物	Top Load(垂直负载能力)= k x 140 N	
无气泡水	Top Load(垂直负载能力)= k x 90 N	
系数 k 的计算方式	k = 样品瓶的重量 - 瓶口重量	
		按照表格的预坯重量 – 6 g

其他要求

- 对于装有含 CO₂ 灌装物的 PET 容器,则必须指定环境温度。
- 对于尺寸 E + 瓶口高度 M < 40 mm 的封盖标签,则必须咨询贴标技术部门。
- 在容器灌装前后,必须将 PET 容器的几何形状提供给克朗斯,以便克朗斯对容器传送部件做出相应调整!

影响灌装高度的因素:

- 灌装机类型、功率、瓶颈几何形状、机器隔距、出口星轮和封盖机星轮的尺寸、碳酸化装置或氮气滴注器、 收缩过程中形成的鼓胀
- 不同机器对灌装高度的要求也不尽相同,也就是说灌装高度应尽可能高,在必要时也要尽可能低。同时要注意恰当的灌装高度。

粘性

根据"克朗斯粘性测量法",预坯/PET 瓶的粘性不得超过以下数值:

- 预坯 5 N
- 瓶子 15 N

容器上的残留物不得对开卷行为造成负面影响。瓶子不得粘连。

底模

容器的各个接触面(足迹)必须具有 \geq 6 mm 的直径。如果接触面 < 6 mm,则无法在热缩通道内进行加工。

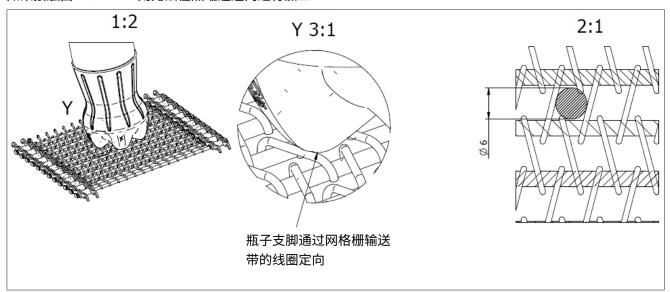


图 31: 接触面特性

粘性的定义:参见预坯技术规范,有关粘性的附加数据表

4 塑料容器(无 PET)

4.1 旋转对称的圆柱形容器

4.1.1 样品图纸 - 示例 1

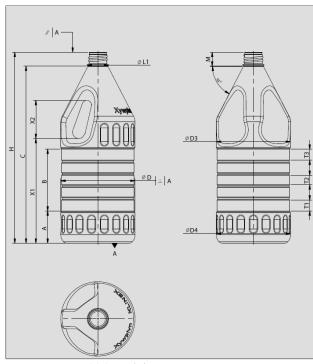


图 32: 示例: 塑料容器(1)

// = 平面平行

Ø L1 = 瓶颈头端直径

H = 容器高度

C = 瓶颈区域尾端的高度

X1 = 提手高度

X2 = 提手穿通区的高度

B = 贴标区高度

A = 贴标区尾端的高度

丄 = 垂直

M = 瓶口高度

ω°= 瓶肩角度

Ø D3/D4 = 容器直径

Ø D = 容器直径

T1 - T3 = 凹槽

4.1.2 样品图纸 - 示例 2

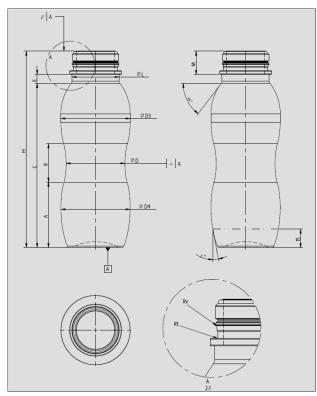


图 33: 示例: 塑料容器 (2)

// = 平面平行

Ø L1 = 瓶颈头端直径

Ø L2 = 瓶颈尾端直径

Ø D = 容器直径

Ø D3 = 容器直径

Ø D4 = 容器直径

上 = 垂直

H = 容器高度

E = 瓶颈高度,支撑环

C = 瓶颈区域尾端的高度

B = 贴标区高度

A = 贴标区尾端的高度

M = 瓶口高度

ω°=瓶肩角度

R3 - R6 = 相关的容器半径

Y°= 瓶底成锥形处角度

Rv = 封盖环的半径

Rt = 支撑环的半径

4.1.3 形状/几何形状与尺寸精度

高度、容器直径和贴标直径

标称容积 [i]		高度 H [mm]	容器直径 D、D3、D4 [mm]
最低	至		
0	0.5	± 0.8	± 0.4
0.5	1.0	± 1.0	± 0.6
1.0	1.5	± 1.0	-0.7 +0.8
1.5	2.5	± 1.3	-0.7 +0.8
2.5		± 1.3	-0.7 +0.8

瓶颈几何形状和瓶口

必须指定瓶颈头端(尺寸 C) 和瓶颈高度(尺寸 E) 以便规划夹颈输送装置。

名称	计量单位	允许偏差 [mm]
瓶颈直径 – 头端	Ø L1	+ 0.2
瓶颈直径 – 尾端	Ø L2	+ 0.2

平面平行

注意章节 4.1.1 4.1.1 [▶ 24] 内样品图纸中的"平面平行"

		允许的
最低	至	平面平行偏差 [mm]
-	40	直径的 2%
40	50	0.9

垂直

注意章节 4.1.1 4.1.1 [▶ 24] 内样品图纸中的"垂直"

标称容积 [l]		允许的
最低	至	垂直轴偏差 [mm]
0	1.5	+ 2.0
1		+ 3.0

额外要求

稳定性

尤其是对于轻量型容器,必须注意空容器和已灌装容器是否具有足够的稳定性。即使是在侧向力的作用下,容器 也不得有剧烈变形。

凹槽

尺寸 T1、T2、T3	最小尺寸
T1 · T3	10 mm
T2	8 mm

凹槽应保证两个瓶子不会相互挂住。

轴向压力负载(Top Load)

空容器和满容器的垂直负载能力(Top Load)最小值不得低于 120 N。如果垂直负载能力(Top Load)低于该值,则应咨询克朗斯!

表面特性

应告知并向克朗斯提供容器制造过程中产生的残留物。

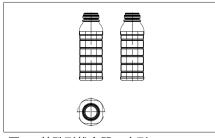
如果容器未经燃烧处理,则必须使用特殊胶水。其缺点是会产生污染、胶水飞溅物等。此外,随着机器产量的增加,还会有胶水线形成。

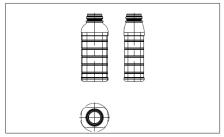
同时还必须通过测试确定可使用哪些涂胶辊和托盘(配对)。

其他要求

在容器灌装前后,必须将 HDPE 容器的几何形状提供给克朗斯,以便克朗斯对容器传送部件做出相应调整!

4.2 非旋转对称的容器(特殊形状容器)


4.2.1 矩阵预览图


以下是各种特殊形状容器的概览图

塑料容器(无 PET)

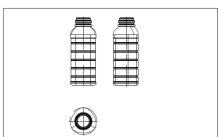
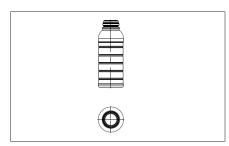
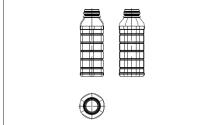




图 34: 特殊形状容器 - 方形

图 35: 特殊形状容器 - 矩形

图 36: 特殊形状容器 - 三角形

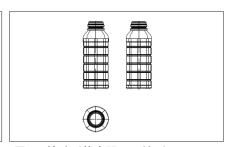
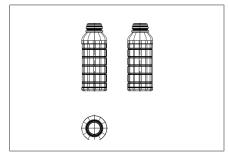
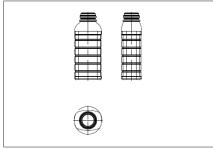




图 37: 特殊形状容器 - 圆形

图 38: 特殊形状容器 - 六边形

图 39: 特殊形状容器 - 八边形

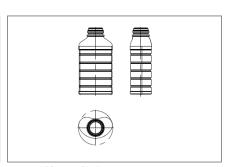


图 40: 特殊形状容器 - 多边形

图 41: 特殊形状容器 - 椭圆形

图 42: 特殊形状容器 - 肾形

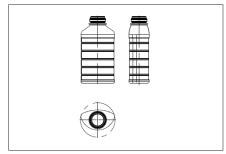


图 43: 其他特殊形状

4.2.2 样品图纸 - 示例 1

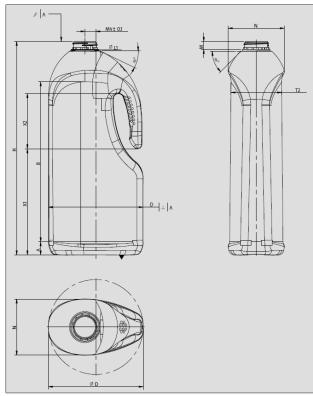


图 44: 示例:塑料容器(3,特殊形状容器)

// = 平面平行

Mv = 瓶口相对于容器中线的偏移量

Ø L1 = 瓶颈头端直径

Ra = 瓶肩半径正面视图

Rb = 提手半径

H = 容器高度

X1 = 提手高度

X2 = 提手穿通区的高度

B = 贴标区高度

A = 贴标区尾端的高度

丄 = 垂直

Rc = 外半径

Rd = 手扣斗内半径

M = 瓶口高度

Rf = 瓶肩半径侧面视图

ω°= 瓶肩角度

T2 = 凹槽

Ra - Rf = 相关的容器半径

Ø D = 相关的容器外径

4.2.3 样品图纸 - 示例 2

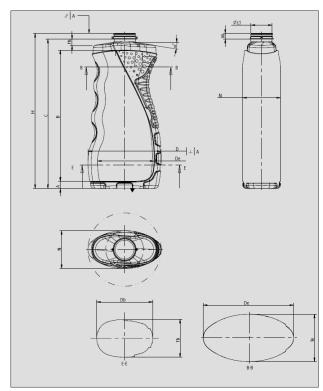


图 45: 示例: 塑料容器(4,特殊形状容器)

// = 平面平行

H = 容器高度

C = 瓶颈区域尾端的高度

Hs = 瓶扇高度

B = 贴标区高度

A = 贴标区尾端的高度

ω°= 瓶肩角度

丄 = 垂直

Ø D = 容器外径

Da - De = 相关的容器长度

Ø K = 瓶口槽的直径

M = 瓶口高度

Ø L1 = 瓶颈头端直径

T - Te = 相关的容器宽度

4.2.4 形状/几何形状与尺寸精度

高度和容器直径

标称容积 [l]			容器外径 D,
最低	至		容器内径 N
0	0.5	± 0.8	± 0.4
0.5	1.0	± 1.0	± 0.6
1.0	1.5	± 1.0	-0.7 +0.8
1.5	2.5	± 1.3	-0.7 +0.8
2.5		± 1.3	-0.7 +0.8

瓶颈几何形状

必须指定瓶颈头端(尺寸 C)和瓶颈高度(尺寸 E)以便规划夹颈输送装置。

名称	计量单位	允许偏差 [mm]
瓶颈直径 – 头端	Ø L1	+ 0.2
瓶颈直径 – 尾端	Ø L2	+ 0.2

平面平行

注意章节 4.2.2 4.2.2 [▶ 28] 内样品图纸中的"平面平行"

		允许的
最低	至	平面平行偏差 [mm]
-	40	直径的 2%

		允许的
最低	至	平面平行偏差 [mm]
40	50	0.9

垂盲

注意章节 4.2.2 4.2.2 [≥ 28] 内样品图纸中的"垂直"

标称容积 [l]		允许的
最低	至	垂直轴偏差 [mm]
0	1	+ 2.0
1		+ 3.0

额外要求

稳定性

尤其是对于轻量型容器,必须注意空容器和已灌装容器是否具有足够的稳定性。即使是在侧向力的作用下,容器 也不得有剧烈变形。

凹槽

尺寸 T1、T2、T3	最小尺寸
T1 · T3	10 mm
T2	8 mm

凹槽应保证两个瓶子不会相互挂住。

轴向压力负载(Top Load)

空容器和满容器的垂直负载能力(Top Load)最小值不得低于 120 N。如果垂直负载能力(Top Load)低于该值,则应咨询克朗斯!

表面特性

应告知并向克朗斯提供容器制造过程中产生的残留物。

如果容器未经燃烧处理,则必须使用特殊胶水。其缺点是会产生污染、胶水飞溅物等。此外,随着机器产量的增加,还会有胶水线形成。

同时还必须通过测试确定可使用哪些涂胶辊和托盘(配对)。

其他要求

在容器灌装前后,必须将 HDPE 容器的几何形状提供给克朗斯,以便克朗斯对容器传送部件做出相应调整!如果瓶口偏离容器中线(Mv),则必须以 mm 为单位指明偏移量。为此请注意章节 4.2.2 4.2.2 [▶ 28] 内样品图纸中的"Mv"尺寸。

罐 5

旋转对称的圆柱形容器 5.1

样品图纸 - 已封盖饮料易拉罐的示例 1a 5.1.1

图 46: 示例:饮料易拉罐(已封盖)

- Ø K = 凹腔直径
- Ø L = 瓶口直径
- H = 容器高度
- E = 瓶颈区域高度
- J = 凹腔边缘高度
- B = 贴标区高度
- A = 贴标区尾端的高度
- /O/= 圆柱形
- Ø D = 容器直径
- Ø SD = 站立直径
- ∩ = 线条
- R1 R4 = 相关的易拉罐半径

5.1.2 样品图纸 - 未封盖饮料易拉罐的示例 1b

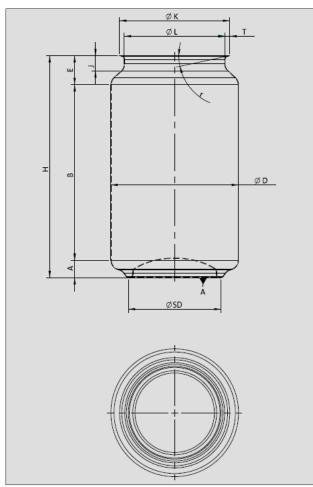


图 47: 示例:饮料易拉罐(未封盖)

- Ø K = 凹腔直径
- Ø L = 瓶口直径
- T = 凹腔宽度
- H = 容器高度
- E = 瓶颈区域高度
- J = 凹腔边缘高度
- B = 贴标区高度
- A = 贴标区尾端的高度
- /O/ = 圆柱形
- Ø D = 容器直径
- Ø SD = 站立直径
- ∩ = 线条
- R1 R4 = 相关的易拉罐半径

样品图纸 - 已封盖罐头易拉罐的示例 2a 5.1.3

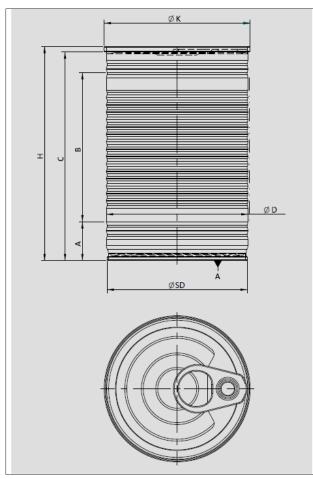


图 48: 示例:罐头易拉罐(已封盖)

- Ø K = 凹腔直径
- H = 容器高度
- C = 瓶颈区域尾端的高度
- B = 贴标区高度
- A = 贴标区尾端的高度
- /O/ = 圆柱形
- Ø D = 容器直径
- Ø SD = 站立直径
- ∩ = 线条

5.1.4 样品图纸 - 已封盖罐头易拉罐的示例 2b



图 49: 示例:罐头易拉罐(已封盖)

Ø K = 凹腔直径

Ø L = 瓶口直径 H

H = 容器高度

E = 瓶颈区域高度

B = 贴标区高度

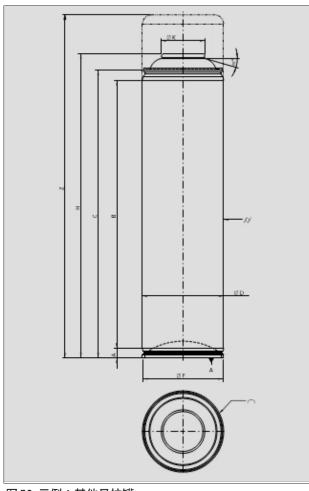
A = 贴标区尾端的高度

T = 凹腔宽度

J = 凹腔边缘高度

P°=凹腔角度

Ø D = 容器直径


/O/ = 圆柱形

Ø SD = 站立直径

∩ = 线条

R1 - R2 = 相关的易拉罐半径

样品图纸 - 示例 3: 其他易拉罐 5.1.5

- Ø K = 凹腔直径
- Ω°=瓶肩角度
- Z = 含封盖容器高度
- H = 容器高度
- C = 瓶颈区域尾端的高度
- B = 贴标区高度
- A = 贴标区尾端的高度
- /O/ = 圆柱形
- Ø D = 容器直径
- Ø F = 站立直径
- ∩ = 线条

图 50: 示例: 其他易拉罐

5.1.6 形状/几何形状与尺寸精度

高度

标称容积 [i]		计量单位	允许偏差 [mm]
最低	至		
0	3.0	Н	± 0.4

适用于饮料易拉罐:

易拉罐高度必须在以下数值范围内,以确保用于易拉罐的灌装机和封盖机可对易拉罐进行加工:

■ ≥ 87 mm:易拉罐最小高度 ■ ≤ 250 mm: 易拉罐最大高度

每个都是从易拉罐口上边缘测量到易拉罐底部下边缘。

在这些数值范围外则无法加工。如低于或超出上述易拉罐高度值,则必须咨询克朗斯。

容器和标签直径

标称容积 [l]		计量单位	允许偏差 [mm]
最低	至		
0	3.0	Ø D	± 0.2

标称容积 [l]		计量单位	允许偏差 [mm]
最低	至		
名称		计量单位	允许偏差 [mm]
站立直径		Ø F	± 0.3

该误差包含了椭圆度。对于椭圆和多边形的横截面,则总是通过横截面较宽的一边来进行计算。

适用于饮料易拉罐:

易拉罐直径必须在以下数值范围内,以确保用于易拉罐的灌装机和封盖机可对易拉罐进行加工:

≥ 52 mm:易拉罐最小直径≤ 85 mm:易拉罐最大直径

每个都是在易拉罐的最大直径处进行测量。

在这些数值范围外则无法加工。如低于或超出上述易拉罐直径值,则必须咨询克朗斯。

瓶颈/凹腔几何形状

名称	计量单位	允许偏差 [mm]
凹腔直径	ØК	± 0.3
凹腔宽度	Т	± 0.3
瓶颈高度	I	± 0.3

表面特性

应始终一同指定易拉罐的表面特性。以下为必要因素:

■ 喷漆:是(光亮或哑光或带有触感元素)/否

■ 刷洗:是(刷洗方向)/否

■ 颜色

- 为保证检验无误,每种产品类型的表面颜色及光泽度必须保持一致且稳定。
- 罐身区域必须具有连贯的漆面。

一般的机械性能要求

- 易拉罐应至少能承受 6.2 bar 的内部压力。
- 空易拉罐应至少能承受 800 N 的轴向力。如低于上述值,则要单独进行研究。

对于巴氏杀菌工艺的要求

- 客户物品(易拉罐、盖子、油漆以及内部涂层)应适合用来执行巴氏杀菌工艺的必要步骤,并且不会对几何 形状或内含物造成负面影响。
- 这尤其涉及水的特性(pH值、成分)、所使用的消毒剂、温度、抗压强度(至少 6.2 bar 或在特殊要求的巴氏杀菌温度下与最终产品的饱和压力相匹配)和持续时间。
- 克朗斯规定的工艺用水技术规范和限值构成了这些要求的基础。但 pH 值例外。与目前的工艺用水技术规范不同的是,易拉罐巴氏杀菌机一般情况下在弱酸 pH 值(pH 6-7)下运行。
- 易拉罐中的顶部空间应至少为标称容积的 4%。
- 强烈建议使用喷漆的拉舌以防止出现发黑变色。

其他要求

- 为顺利进行加工,在整个灌装和包装过程中,高度 H 和直径 D 不得超过公差!(否则,冲瓶机、易拉罐转换器以及其他与规格相关的部件就会出故障。)
- 如果凹腔直径 K 或罐口直径 L > 直径 D,则必须单独发出一条信息(可能是空易拉罐区域内出现问题或损坏,和/或易拉罐在满罐区域内升起)。
- 易拉罐应具备耐腐蚀性。

- 应一同指定材料种类(铝或马口铁)。
- 应一同指定空易拉罐(含指定公差)的克重。
- 应一同指定制造商和制造商特定的类型名称。
- 应一同指定内部涂层的类型/名称。内部涂层必须适合待灌装的产品,且该涂层不得以任何方式与产品发生反应(例如起泡、氧化、空气反应、 涡流)。
- 罐底座环的漆面必须完好且涂布均匀,以确保有充分的滑动性。

罐底漆面部分或完全缺失会对容器处理造成影响,并可能会致产品损耗增加、容器受损和出现划痕,以 及导致输送带润滑剂浓度/消耗量增加。

定位条几何形状 6

在定位条的容器范围内不得有刻字或浮雕。

侧壁定位条 6.1

侧壁定位条(凹式) 6.1.1

侧壁定位条的公差见以下简图。所示尺寸对于规划机器的对中凸轮是必要的。

名称	计量单位	允许偏差 [mm]
瓶底上方的定位条起始端	NBH	-
定位条宽度	NB	+ 0.5
定位条高度	NH	+ 0.5
定位条深度	NT	+ 0.5
定位条头部半径	Ra	- 0.3
定位条底部半径	Rb	- 0.3
外部半径	Rc	- 0.3
手扣斗内半径	Rd	- 0.3
定位条倾斜角度	δ	+ 2°
手扣斗倾斜角度	φ	+ 2°

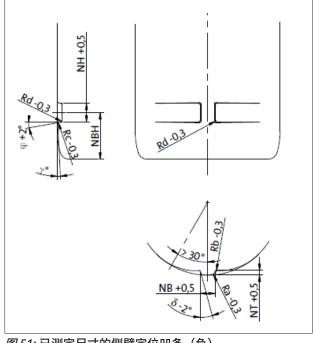


图 51: 已测定尺寸的侧壁定位凹条(负)

机器运行方向取决于侧壁定位条的对称性。瓶底上方的 定位条起始端(NBH)不得低于 15 mm。对于锥形的 瓶底轮廓,角度 y 不得超过 10°。

侧壁定位条(凸式) 6.1.2

侧壁定位条的公差见以下简图。所示尺寸对于规划机器的对中凸轮是必要的。

名称	计量单位	允许偏差 [mm]
瓶底上方的定位条起始端	NBH	-
定位条长度	NL	+ 0.5

TD10026397 ZH 01 6.1 侧壁定位条

名称	计量单位	允许偏差 [mm]
定位条宽度	NB	+ 0.5
定位条高度	NH	+ 0.5
定位条头部半径	Ra	- 0.3
定位条底部半径	Rb	- 0.3
定位条头部半径	Rc	- 0.3
定位条底部半径	Rd	- 0.3
定位条宽度的倾斜角度	δ	+ 1°
定位条长度的倾斜角度	φ	+ 2°

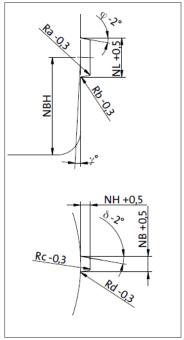


图 52: 已测定尺寸的侧壁定位凸条(正)

瓶底上方的定位条起始端(NBH)不得低于 15 mm。对于锥形的瓶底轮廓,角度 γ 不得超过 10°。

6.2 玻璃容器的瓶底定位条

瓶底定位条的公差见以下简图。所示尺寸对于规划机器的对中凸轮是必要的。

名称	计量单位	允许偏差 [mm]
定位条高度	NH	+ 0.5
定位条外宽	Na	+ 0.5
定位条内宽	Ni	+ 0.5
定位条外半径	Ra	- 0.3
定位条侧半径	Rb	- 0.3
定位条内半径	Rc	- 0.3
定位条宽度的倾斜角度	δ	+ 1°

TD10026397 ZH 01 6.2 玻璃容器的瓶底定位条

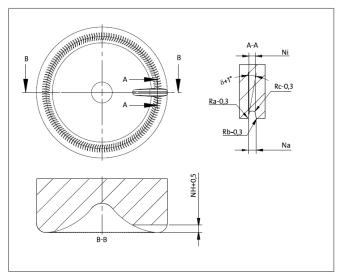


图 53: 已测定尺寸的玻璃容器瓶底定位条

6.3 塑料容器的瓶底定位条

瓶底定位条的公差见以下简图。所示尺寸对于规划机器的对中凸轮是必要的

名称	计量单位	允许偏差 [mm]
定位条长度	NL	+ 0.5
定位条宽度	NB	+ 0.5
定位条高度	NH	+ 0.5
定位条偏心率	NE	± 0.2
定位条外半径	Ra	- 0.3
定位条内半径	Rb	- 0.3
定位条侧半径	Rc	- 0.3
定位条宽度的倾斜角度	δ	+ 1°
定位条长度的倾斜角度	φ	+ 2°

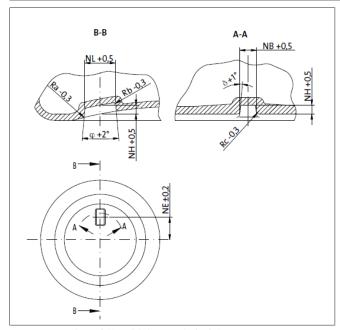


图 54: 已测定尺寸的塑料容器瓶底定位条

TD10026397 ZH 01 6.3 塑料容器的瓶底定位条

定位条几何形状

TD10026397 ZH 01 6.3 塑料容器的瓶底定位条 4

