

Especificação

Especificação dos recipientes KRONES

Índice

1	Gen	eralidad	les	4
	1.1	Dispos	sições básicas	4
	1.2	Ângul	o de inclinação dos recipientes	4
2	Reci	pientes	de vidro	6
	2.1	Recipi	entes cilíndricos rotacionalmente simétricos	6
		2.1.1	Desenho modelo – Exemplo	6
		2.1.2	Forma/geometria e estabilidade dimensional	6
	2.2		entes não rotacionalmente simétricos (recipientes moldados)	10
		2.2.1	Desenho modelo – Exemplo	10
		2.2.2	3	10
		2.2.3	Forma/geometria e estabilidade dimensional	11
3	Reci	pientes	em PET	15
	3.1	Recipi	entes cilíndricos rotacionalmente simétricos	15
		3.1.1	Desenho modelo – Exemplo	15
		3.1.2	Forma/geometria e estabilidade dimensional	15
	3.2	Recipi	entes não rotacionalmente simétricos (recipientes moldados)	20
		3.2.1	Matriz de visão global	20
		3.2.2	•	21
		3.2.3	Forma/geometria e estabilidade dimensional	21
4	Reci	piente d	le plástico (sem PET)	27
	4.1	Recipi	entes cilíndricos rotacionalmente simétricos	27
		4.1.1	Desenho modelo – Exemplo 1	27
		4.1.2	Desenho modelo – Exemplo 2	28
		4.1.3	Forma/geometria e estabilidade dimensional	28
	4.2	•	entes não rotacionalmente simétricos (recipientes moldados)	30
		4.2.1	Matriz de visão global	30
		4.2.2	•	31
		4.2.3	Desenho modelo – Exemplo 2	32
		4.2.4	Forma/geometria e estabilidade dimensional	32
5	Lata	S		35
	5.1	Recipi	entes cilíndricos rotacionalmente simétricos	35
		5.1.1	Desenho modelo – Exemplo 1a Latas fechadas	35
		5.1.2	Desenho modelo – Exemplo 1b Latas abertas	36
		5.1.3	Desenho modelo – Exemplo 2a Latas de conserva fechadas	37
		5.1.4	Desenho modelo – Exemplo 2b Latas de conserva fechadas	38
		5.1.5	Desenho modelo – Exemplo 3: Outras latas	39
		5.1.6	Forma/geometria e estabilidade dimensional	39
6	Geo	metria d	los cames	42

TD10026397 PT 02 Índice

Índice

6.1	Cames	s da parede lateral	42
	6.1.1	Cames da parede lateral negativos (profundos)	42
	6.1.2	Cames da parede lateral positivos (elevados)	43
6.2	Cames	s do fundo para recipientes de vidro	43
6.3	Cames	s do fundo para recipientes de plástico	44

TD10026397 PT 02 Índice

1 Generalidades

1.1 Disposições básicas

Esta especificação apresenta os requisitos das instalações de enchimento e embalamento de recipientes, esta não substitui outras especificações. Especialmente a especificação sobre recipientes descartáveis PET da KRONES, que especifica as características dos recipientes produzidos na KRONES Contiform, não é substituída por esta especificação!

As dimensões indicadas e as respectivas tolerâncias são requisitos básicos para o dimensionamento das diferentes máquinas. Em caso de divergências desta especificação, é necessário comunicá-lo antecipadamente aos departamentos técnicos em questão.

Os parâmetros em questão são os seguintes:

- Forma/geometria e estabilidade dimensional
- Características físicas
- Geometria do gargalo/boca da garrafa

A especificação é válida para os seguintes tipos de recipientes:

- Recipientes de vidro: recipientes cilíndricos rotacionalmente simétricos, bem como recipientes moldados
- Recipientes em PET:
 recipientes cilíndricos rotacionalmente simétricos, bem como recipientes moldados
- Recipientes em plástico: recipientes cilíndricos rotacionalmente simétricos, bem como recipientes moldados
- Latas

A especificação deve ser considerada como complemento para a clarificação de um desenho do recipiente. Esta especificação não substitui o desenho do recipiente do cliente!

Se as dimensões, tolerâncias e outras especificações indicadas forem excedidas, é necessário entrar em contato com a KRONES!

As peças dependentes dos recipientes só podem ser desenvolvidas em combinação com o material da amostra original. O material de amostra deverá ser disponibilizado pelo cliente. Isto aplica-se especialmente no caso de fornecedores diferentes de recipientes (cada fornecedor deve preparar o material de amostra).

1.2 Ângulo de inclinação dos recipientes

Em todos os recipientes deve ser indicado o ângulo de inclinação. Este é definido através do centro de gravidade S e do raio do apoio (= diâmetro do apoio SD/2) do recipiente.

→ Ver os desenhos seguintes (servem como referência para todos os tipos de recipientes)

O ângulo de inclinação k do recipiente tem de ser no mínimo de 10°.

TD10026397 PT 02 1.1 Disposições básicas

Generalidades

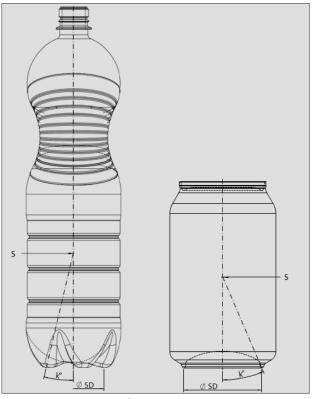


Fig. 1: Exemplo: Garrafa PET, lata

S = Centro de gravidade K = Ângulo de inclinação Ø SD = Diâmetro do apoio

2 Recipientes de vidro

2.1 Recipientes cilíndricos rotacionalmente simétricos

2.1.1 Desenho modelo – Exemplo

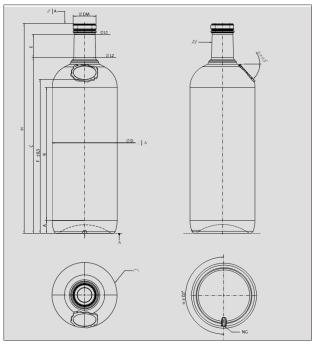


Fig. 2: Garrafa de vidro dimensionada

// = Paralelismo plano

Ø DM = Diâmetro da boca da garrafa

Ø L1 = Diâmetro do gargalo, início

Ø L2 = Diâmetro do gargalo, fim

Ø D = Diâmetro do recipiente

H = Altura do recipiente

E = Altura da área do gargalo

C = Altura da área do gargalo, fim

F = Altura do emblema

B = Altura da área de rotulagem

A = Altura da área de rotulagem, fim

 \perp = Perpendicularidade

/o/ = Forma cilíndrica

β = Inclinação

α = Posição do came

∩ = Forma linear

NG = Geometria do came segundo desenho em separado

2.1.2 Forma/geometria e estabilidade dimensional

Dimensões limite com base em DIN 6129-1 (todas as dimensões em mm)

Alturas

Altura total H		Desvio	Altura total H		Desvio
acima de	até	permitido [mm]	acima de	até	permitido [mm]
-	50	± 0,8	250	300	± 1,8
50	75	± 0,9	300	325	± 1,9
75	100	± 1,0	325	350	± 2,0
100	125	± 1,1	350	375	± 2,1
125	150	± 1,2	375	400	± 2,2
150	175	± 1,3	400	425	± 2,3
175	200	± 1,4	425	450	± 2,4
200	225	± 1,5	450	475	± 2,5
225	250	± 1,6	475	500	± 2,6

Cálculo do desvio permitido [mm] para H: \pm (0,6 + 0,004 x A); valores sempre arredondados para 0,1 mm.

Diâmetro recipiente

Diâmetro do recipiente D		Desvio	Diâmetro do re	cipiente D	Desvio
acima de	até	permitido [mm]	acima de	até	permitido [mm]
-	25	± 0,8	100	108	± 1,8
25	33	± 0,9	108	116,5	± 1,9
33	41,5	± 1,0	116,5	125	± 2,0
41,5	50	± 1,1	125	133	± 2,1
50	58	± 1,2	133	141,5	± 2,2
58	66,5	± 1,3	141,5	150	± 2,3
66,5	75	± 1,4	150	158	± 2,4
75	83	± 1,5	158	166,5	± 2,5
83	91,5	± 1,6	166,5	175	± 2,6
91,5	100	± 1,7	175	183	± 2,7

Cálculo do desvio permitido [mm] para D: \pm (0,5 + 0,012 x D); valores sempre arredondados para 0,1 mm. No caso de secções transversais ovais e angulares, aplica-se para a determinação respectivamente a medida da secção transversal do lado largo.

Geometria do gargalo

Para o dimensionamento da guia do gargalo é necessário indicar o início do gargalo (medida C) e a altura do gargalo (medida E).

Denominação	Medida	Desvio permitido [mm]
Diâmetro do gargalo – Início	Ø L1	± 0,2
Diâmetro do gargalo – Fim	Ø L2	± 0,2

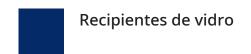
No caso de etiquetas envolventes especiais o desvio máximo da conicidade não pode exceder 0,1°.

Posição do came

Denominação	Medida	Desvio permitido [mm]
Posição do came relativamente ao	α	± 0,1°
emblema		

Emblema

Na zona dos ombros é permitida no máx. uma saliência dos emblemas de < 0,75 mm no diâmetro. Isso se aplica à parte dianteira e traseira dos emblemas aplicados.


Denominação	Medida	Desvio permitido [mm]
Inclinação do emblema	β	± 0,3°

Paralelismo plano

Observar "Paralelismo plano" no cap. 2.1.1 Desenho modelo - Exemplo [▶ 6]

Diâmetro da bo	Desvio permitido [mm]	
acima de	até	
-	40	2 % do diâmetro
40	60	0,9
60	-	1,0

Perpendicularidade

Observar "Perpendicularidade" no cap. 2.1.1 Desenho modelo - Exemplo [▶ 6]

	Altura total H	Desvio permitido dos eixos da
acima de	até	perpendicularidade [mm]
0	120	± 0,8
120	140	± 0,9
140	160	± 1,0
160	180	± 1,1
180	200	± 1,2
200	220	± 1,3
220	240	± 1,4
240	260	± 1,5
260	280	± 1,6
280	300	± 1,7
300	320	± 1,8
320	340	± 1,9
340	360	± 2,0
360	380	± 2,1
380	400	± 2,2
400	420	± 2,3
420	440	± 2,4
440	460	± 2,5
460	480	± 2,6
480	500	± 2,7

Fórmula de cálculo para o desvio dos eixos:

H superior a 120: $(0,3 + 0,01 \times A) \times 0,5$; valores sempre arredondados para 0,1 mm. (Na altura do recipiente H está incluída a boca da garrafa, cf. 2.1.1 Desenho modelo – Exemplo [\triangleright 6])

Forma cilíndrica/Forma linear

Na área de rotulagem, a forma cilíndrica não pode divergir mais do que 0,3 mm da dimensão nominal do recipiente.

Requisitos adicionais

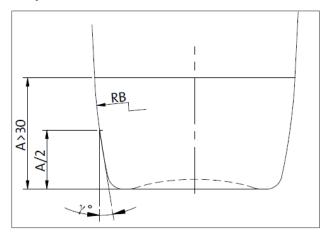
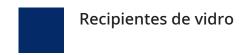



Fig. 3: Contorno do fundo dimensionado

Se a altura do fundo A for superior a 30 mm é necessário indicar o raio RB.

No caso de contornos do fundo cônicos e altura do fundo A > 30 mm é necessário dimensionar o ângulo yº para metade da altura do fundo (A/2).

Superfície e estrutura da superfície

No caso de recipientes de vidro temperados ou superfícies difusas (também no caso de gravação ou não gravação no vidro) é necessária esta indicação para se poder efetuar eventuais tentativas. Além disso, a cor do recipiente também é relevante como critério de dimensionamento.

Bocas da garrafa

A forma e as tolerâncias das bocas da garrafa estão normalizadas de acordo com DIN 6094. Os desvios desta norma têm de ser indicados separadamente.

Se forem utilizados bocas da garrafa específicos do cliente, têm de ser incluídos os respectivos desenhos.

Geometria do fundo

No caso de recipientes com relevo no fundo e/ou na parede lateral (positivo/negativo) (também no caso de gravação ou não gravação na área do fundo) estes têm de ser especificamente dimensionados e indicados com as respectivas tolerâncias (cf. cap. 6 Geometria dos cames [> 42]).

Outros requisitos

No caso de rótulos de segurança com as dimensões E + altura boca da garrafa M < 40 mm é necessário entrar em contato com a divisão de tecnologia de rotulagem. Se a proteção de rótulos estiver em falta, é necessário entrar em contato com o departamento técnico da KRONES. Se a proteção de rótulos estiver em falta, há que contar com danos no rótulo.

2.2 Recipientes não rotacionalmente simétricos (recipientes moldados)

2.2.1 Desenho modelo – Exemplo

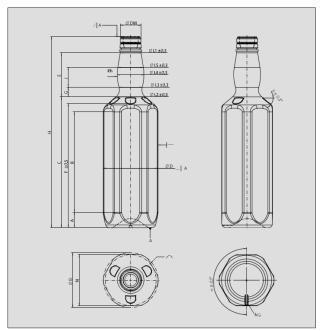


Fig. 4: Garrafa de vidro dimensionada (recipiente moldado)

// = Paralelismo plano

Ø DM = Diâmetro da boca da garrafa

Ø L1 = Diâmetro do gargalo, início

Ø L2 = Diâmetro do gargalo, fim

Ø L1 – L5 = diâmetro do gargalo relevante

Rh = raio do gargalo relevante

G, J, E = altura do gargalo relevante

Ø D = Diâmetro do recipiente

N = diâmetro interior do recipiente

H = Altura do recipiente

C = Altura da área do gargalo, fim

F = Altura do emblema

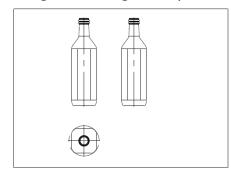
B = Altura da área de rotulagem

A = Altura da área de rotulagem, fim

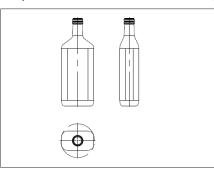
_ = retitude

 \perp = Perpendicularidade

β = Inclinação


α = Posição do came

∩ = Forma linear


NG = Geometria do came segundo desenho em separado

2.2.2 Matriz de visão global

A seguinte visão global representa esquematicamente os vários recipientes moldados:

Fig. 5: Forma do recipiente – quadrada

Fig. 6: Forma do recipiente – retangular

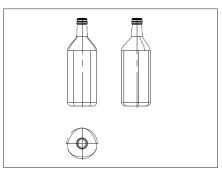


Fig. 7: Forma do recipiente – triangular

Recipientes de vidro

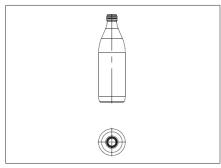
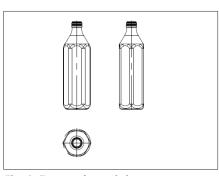



Fig. 8: Forma do recipiente – circular

Fig. 9: Forma do recipiente – hexagonal

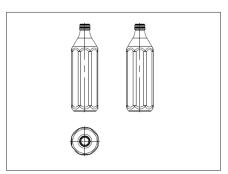
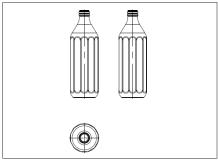



Fig. 10: Forma do recipiente – octogonal

Fig. 11: Forma do recipiente – poligonal

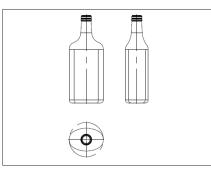


Fig. 12: Forma do recipiente – oval

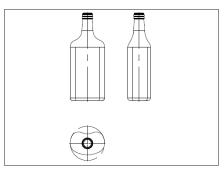


Fig. 13: Forma do recipiente – reniforme

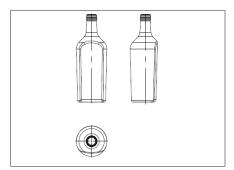



Fig. 14: Forma especial e outras

2.2.3 Forma/geometria e estabilidade dimensional

Dimensões limite com base em DIN 6129-1 (todas as dimensões em mm)

Alturas

Altura total H		Desvio	/	Altura total H	Desvio
acima de	até	permitido [mm]	acima de	até	permitido [mm]
-	50	± 0,8	250	300	± 1,8
50	75	± 0,9	300	325	± 1,9
75	100	± 1,0	325	350	± 2,0
100	125	± 1,1	350	375	± 2,1
125	150	± 1,2	375	400	± 2,2
150	175	± 1,3	400	425	± 2,3
175	200	± 1,4	425	450	± 2,4
200	225	± 1,5	450	475	± 2,5

Altura total H		Desvio	Altura	total H	Desvio
acima de	até	permitido [mm]	acima de	até	permitido [mm]
225	250	± 1,6	475	500	± 2,6

Cálculo do desvio permitido [mm] para H: ± (0,6 + 0,004 x A); valores sempre arredondados para 0,1 mm.

Diâmetro recipiente

Diâmetro do rec	ipiente D	Desvio	Diâme	tro do recipiente D	Desvio
Diâmetro interior do recipiente N		permitido [mm]	Diâmetro i	nterior do recipiente N	permitido [mm]
acima de	até		acima de	até	
-	25	± 0,8	100	108	± 1,8
25	33	± 0,9	108	116,5	± 1,9
33	41,5	± 1,0	116,5	125	± 2,0
41,5	50	± 1,1	125	133	± 2,1
50	58	± 1,2	133	141,5	± 2,2
58	66,5	± 1,3	141,5	150	± 2,3
66,5	75	± 1,4	150	158	± 2,4
75	83	± 1,5	158	166,5	± 2,5
83	91,5	± 1,6	166,5	175	± 2,6
91,5	100	± 1,7	175	183	± 2,7

Cálculo do desvio permitido [mm] para D: \pm (0,5 + 0,012 x D); valores sempre arredondados para 0,1 mm. No caso de secções transversais ovais e angulares, aplica-se para a determinação respectivamente a medida da secção transversal do lado largo.

Geometria do gargalo

Para o dimensionamento da guia do gargalo é necessário indicar o início do gargalo (medida C) e a altura do gargalo (medida E).

Denominação	Medida	Desvio permitido [mm]
Diâmetro do gargalo – Início	Ø L1	± 0,3
Diâmetro do gargalo – Fim	Ø L2	± 0,3

No caso de etiquetas envolventes especiais o desvio máximo da conicidade não pode exceder 0,1°.

Posição do came

Denominação	Medida	Desvio permitido [mm]
Posição do came relativamente ao	α	± 0,1°
emblema		

Emblema

Na zona dos ombros é permitida no máx. uma saliência dos emblemas de < 0,75 mm no diâmetro. Isso se aplica para a parte dianteira e para a parte traseira dos emblemas aplicados.

Denominação	Medida	Desvio permitido [mm]
Inclinação do emblema	β	± 0,3°

Paralelismo plano

Observar "Paralelismo plano" no cap. 2.2.1 Desenho modelo - Exemplo [▶ 10]

12

Diâmetro da boca da garrafa DM		Desvio permitido [mm]
acima de	até	
-	40	2 % do diâmetro
40	60	0,9
60	-	1,0

Perpendicularidade

Observar "Perpendicularidade" no cap. 2.2.1 Desenho modelo – Exemplo [▶ 10]

Altura total H		Desvio permitido dos eixos da
acima de	até	perpendicularidade [mm]
0	120	± 0,8
120	140	± 0,9
140	160	± 1,0
160	180	± 1,1
180	200	± 1,2
200	220	± 1,3
220	240	± 1,4
240	260	± 1,5
260	280	± 1,6
280	300	± 1,7
300	320	± 1,8
320	340	± 1,9
340	360	± 2,0
360	380	± 2,1
380	400	± 2,2
400	420	± 2,3
420	440	± 2,4
440	460	± 2,5
460	480	± 2,6
480	500	± 2,7

Fórmula de cálculo para o desvio dos eixos:

H superior a 120: (0,3 + 0,01 x A) x 0,5; valores sempre arredondados para 0,1 mm. (Na altura do recipiente H está incluída a boca da garrafa, cf. 2.2.1 Desenho modelo – Exemplo [▶ 10])

Retitude/forma linear

Na área de rotulagem, a retitude e a forma linear não podem divergir mais do que 0,3 mm do estado ideal do recipiente.

Recipientes de vidro

Requisitos adicionais

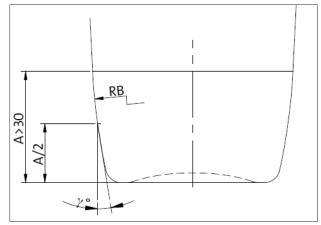


Fig. 15: Contorno do fundo dimensionado

Se a altura do fundo A for superior a 30 mm é necessário indicar o raio RB.

No caso de contornos do fundo cônicos e altura do fundo A > 30 mm é necessário dimensionar o ângulo yº para metade da altura do fundo (A/2).

Superfície e estrutura da superfície

No caso de recipientes de vidro temperados ou superfícies difusas (também no caso de gravação ou não gravação no vidro) é necessária esta indicação para se poder efetuar eventuais tentativas. Além disso, a cor do recipiente também é relevante como critério de dimensionamento.

Geometria do fundo

No caso de recipientes com relevo no fundo e/ou na parede lateral (positivo/negativo) (também no caso de gravação ou não gravação na área do fundo) estes têm de ser especificamente dimensionados e indicados com as respectivas tolerâncias (cf. cap. 6 Geometria dos cames [> 42]).

Outros requisitos

No caso de geometrias curvas (cf. geometria do gargalo no cap. 2.2.1 Desenho modelo – Exemplo [> 10]) as dimensões devem ser indicadas de forma a que a geometria exterior esteja totalmente determinada (reprodutibilidade da geometria).

Denominação	Medida	Desvio permitido [mm]
Geometria do gargalo	Ø L1	± 0,3
	Ø L2	± 0,3
	Ø L3	± 0,3
	Ø L4	± 0,3
	Ø L5	± 0,3

No caso de rótulos de segurança com as dimensões E + altura boca da garrafa M < 40 mm é necessário entrar em contato com a divisão de tecnologia de rotulagem. Se a proteção de rótulos estiver em falta, é necessário entrar em contato com o departamento técnico da KRONES. Se a proteção de rótulos estiver em falta, há que contar com danos no rótulo.

3.1 Recipientes cilíndricos rotacionalmente simétricos

3.1.1 Desenho modelo – Exemplo

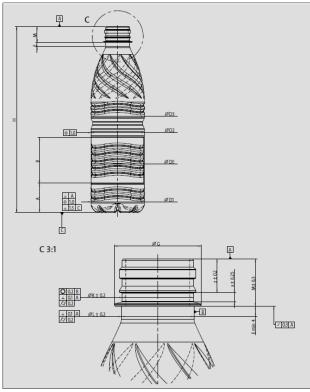


Fig. 16: Garrafa PET dimensionada

// = Paralelismo plano

Ø DM = Diâmetro da boca da garrafa

Ø L1 = Diâmetro do gargalo, início

Ø L2 = Diâmetro do gargalo, fim

Ø D = Diâmetro do recipiente

H = Altura do recipiente

E = Altura da área do gargalo

C = Altura da área do gargalo, fim

F = Altura do emblema

B = Altura da área de rotulagem

A = Altura da área de rotulagem, fim

 \perp = Perpendicularidade

/o/ = Forma cilíndrica

β = Inclinação

α = Posição do came

∩ = Forma linear

NG = Geometria do came segundo desenho em separado

3.1.2 Forma/geometria e estabilidade dimensional

Alturas, diâmetro do recipiente e da rotuladora

Volume nominal [l]			Diâmetro do recipiente D3, diâmetro da rotuladora D [mm]
acima de	até	Desvio permitido [mm]	
0	0,5	± 0,8	± 0,4
0,5	1,0	± 1,0	± 0,6
1,0		± 1,3	-0,7 +0,8

As tolerâncias indicadas são relativas a um recipiente não cheio.

O diâmetro do recipiente tem de ser, no mínimo, de 45 mm. No caso de excedimento do diâmetro de um recipiente > 108 mm é necessário contatar a KRONES, para se poder garantir a processabilidade nas estrelas de manipulação pelo gargalo e nas eliminações.

Na área da tecnologia de enchimento, podem ser processadas as seguintes alturas de recipientes PET para todas as aplicações exceto para a asséptica:

- ≥ 150 mm: altura mínima do recipiente PET
- ≤ 350 mm: altura máxima do recipiente PET

medido respectivamente do canto superior do bocal do recipiente até ao canto inferior do fundo do recipiente. O intervalo entre o recipiente menor e o recipiente maior não pode exceder os 200 mm de diferença de altura.

Se a altura mínima ou máxima do recipiente for excedida, é possível verificar construtivamente o processamento até aos seguintes valores em casos isolados:

- ≤ 370 mm ou
- ≥ 105 mm (para PET descartável na manipulação pelo gargalo) ou
- ≥ 140 mm (PET retornável no sistema de manipulação pelo fundo)

Fora destes valores a processabilidade não está garantida.

Geometria do gargalo e boca da garrafa

Para o dimensionamento da guia do gargalo é necessário indicar o início do gargalo (medida C) e a altura do gargalo (medida E).

Altura do gargalo E [mm]	Desvio permitido [mm]
< 4	não permitido
> 4	+ 0,3

É necessário entrar em contato com a KRONES no caso de excedimento destas tolerâncias na área do gargalo e da boca da garrafa.

No caso de utilização de outras bocas da garrafa (outras alturas, outros diâmetros do anel de suporte) é necessário uma verificação da processabilidade combinada pela KRONES. Na utilização de insersores de clipe é necessário entrar em contato com o departamento técnico da tecnologia de embalamento.

Diâmetro quia

O diâmetro guia do recipiente tem de ser sempre o diâmetro maior no recipiente, mesmo quando esgotadas todas as tolerâncias. O recipiente necessita de um diâmetro guia constante.

A altura deste diâmetro guia tem de estar entre 40 – 50 mm. Com encargos especiais, este também pode estar na altura entre 30 – 40 mm (é suficiente quando em uma área de 10 mm existe pelo menos um ponto de conexão com o diâmetro máximo do recipiente.)

Em caso de desvio das especificações, é necessário entrar em contato com o departamento técnico da tecnologia de embalamento.

Paralelismo plano

Observar "Paralelismo plano" no cap. 3.1.1 Desenho modelo - Exemplo [▶ 15]

		Desvio permitido do
acima de	até	paralelismo plano [mm]
-	40	2 % do diâmetro
40	50	0,9

Perpendicularidade

Observar "Perpendicularidade" no cap. 3.1.1 Desenho modelo - Exemplo [▶ 15]

16

		Desvio permitido da
acima de	até	perpendicularidade [mm]
0	1,5	3,0
1,5	2,5	4,0
2,5		5,0

Forma cilíndrica/Forma linear

Na área de rotulagem, a forma cilíndrica e a forma linear não podem divergir mais do que 0,3 mm do estado ideal do recipiente.

Requisitos adicionais

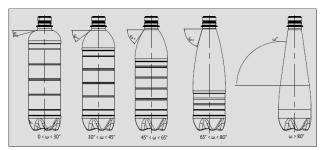


Fig. 17: Tipos de recipientes

Forma do recipiente e capacidade de transporte

A capacidade de transporte de recipientes em um transportador pneumático ou em uma máquina empacotadora depende consideravelmente da forma do recipiente, caracterizado especialmente pelo ângulo do ombro ω . É feita a distinção entre as seguintes áreas:

Ângulo do ombro ω [°]		Capacidade de transporte
acima de	até	
0	30	muito limitado
30	45	Воа
45	65	muito bom
65	80	limitado
80		muito limitado

Tab. 1: Em relação a um transportador pneumático:

Ângulo do ombro ω [°]		Processabilidade
acima de	até	
0	30	Liberação especial + Teste com dispositivo de inserção de divisórias
0	30	Liberação especial com insersores de clipe
80		Embalagens de encolhimento visualmente deficientes
80		Liberação especial com embalagens Wraparound

Tab. 2: Em relação a uma máquina empacotadora Variopac/Varioline:

Pessoa de contato: Departamento técnico da tecnologia de embalamento

No caso de ângulos de ombro ω < 30° ou ω > 65° é necessário entrar em contato com a KRONES.

Dependendo do ângulo do ombro ω o raio do gargalo Rh e a altura do gargalo E têm de corresponder aos seguintes valores mínimos:

Ângulo do ombro ω [°]		Raio do gargalo Rh [mm]	Altura do gargalo E [mm]
acima de	até		
	20	não permitido	
20	25	> 1,0 > 6,0	

Ângulo do ombro ω [°]		Raio do gargalo Rh [mm]	Altura do gargalo E [mm]
acima de	até		
25	35	> 1,0	> 5,0
35		> 1,0	> 4,5
35		> 1,5	> 4,0

Estabilidade

Especialmente no caso de recipientes leves, é necessário ter atenção a uma estabilidade suficiente dos recipientes vazios e cheios. Mesmo com a atuação de forças laterais o recipiente não pode ter grandes deformações.

Termo estabilidade

Os seguintes desvios dimensionais porcentuais das dimensões nominais são permitidos para os recipientes fechados, cheios de água carbonatada $(8,0 - 0,5 + 0 \text{ g/I CO}_2)$ após armazenamento de 24 h a 38°C (qualquer umidade do ar).

Processamento posterior de recipientes com parada da máquina:

Devido às alterações da dimensão dos recipientes, não é possível um processamento posterior após > 30 minutos, ou é apenas de forma muito limitada. Isso se aplica a todo o ramal da instalação. Esta especificação não é válida para as cavidades para agarrar, entre outros.

Volume nominal [l]			Diâmetro do recipiente D,
acima de	até		diâmetro da rotuladora DE [mm]
0	1,5	3,0	4,0
1,5		3,5	5,0

Engates

Dimensões T1, T2, T3	Dimensão mínima
T1, T3	10 mm
T2	8 mm

Os engates têm de estar confeccionados de modo a que duas garrafas não possam ficar pressas uma na outra.

Tensão de compressão axial (Top Load)

A medição da resistência vertical (Top Load) do recipiente vazio até que quebre (resistência máxima, 'peak load'). A velocidade de deslocamento do pistão deve ser de 510 mm/min, para garantir a comparabilidade de várias medições. Os recipientes têm de suportar no centro uma carga de k x 140 N.

Para um produto de enchimento sem gás as espessuras da parede do recipiente são geralmente menores, o TopLoad para estas aplicações é reduzido. Assim, os recipientes têm de suportar no centro uma carga de k x 90 N, onde o fator k é calculado do seguinte modo:

Produto de enchimento carbonatado	Top Load = k x 140 N		
Produto de enchimento sem gás		Top Load = k x 90 N	
Cálculo k	k = Peso da garrafa de amostra – peso da boc		
		Peso da pré-forma segundo tabela – 6 g	

Outros requisitos

- Nos recipientes PET com produto de enchimento com CO₂ deve ser indicada a temperatura ambiente.
- No caso de rótulos de segurança com as dimensões E + altura boca da garrafa M < 40 mm é necessário entrar em contato com a divisão de tecnologia de rotulagem.
- A geometria de um recipiente PET tem de ser informada à KRONES antes e depois do enchimento do mesmo, para que as peças de formato para recipientes possam ser adaptadas de forma correspondente!

Fatores de influência sobre o nível de enchimento:

- Tipo de enchedora, rendimento, geometria do gargalo da garrafa, passo da máquina, tamanho da estrela de saída e da estrela da tampadora, carbonatação ou droppler de nitrogênio, formação de inchaços no processo de encolhimento
- Os requisitos relativos ao nível de enchimento são muito heterogêneos nas diferentes máquinas, ou seja, o nível de enchimento tem de ser tão elevado quanto possível e tão baixo quanto necessário. Para isso, deve se atentar a um nível de enchimento equilibrado.

Adesividade

Segundo o método de medição "Medição da adesividade KRONES", a adesividade das pré-formas/garrafas PET não pode ultrapassar os seguintes valores:

- Pré-forma 5 N
- Garrafas 15 N

Os resíduos nos recipientes não podem influenciar negativamente o comportamento de desenrolamento. Tem de estar excluída uma aglutinação das garrafas.

Definição de adesividade: Veja especificação das pré-formas, folha adicional adesividade

Molde de fundo

Cada superfície de contato individual (pegada) do recipiente tem de apresentar um diâmetro de \geq 6 mm.

Se a superfície de contato for < 6 mm, não é possível o processamento no túnel de encolhimento.

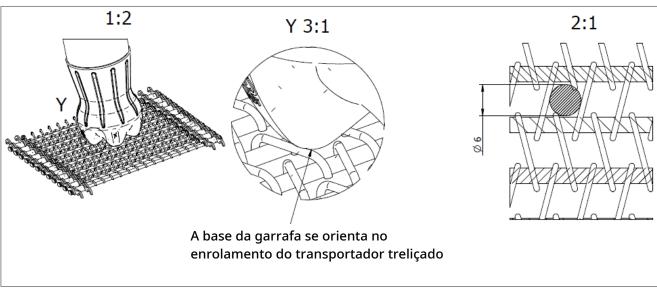
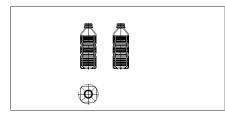


Fig. 18: Característica da superfície de contato


19

Definição de adesividade: Veja especificação das pré-formas, folha adicional adesividade

3.2 Recipientes não rotacionalmente simétricos (recipientes moldados)

3.2.1 Matriz de visão global

A seguinte visão global representa esquematicamente os vários recipientes moldados

Fig. 19: Forma do recipiente – quadrada

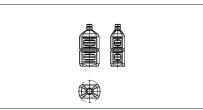


Fig. 20: Forma do recipiente – retangular

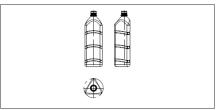


Fig. 21: Forma do recipiente – triangular

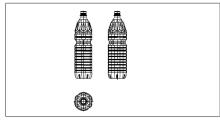


Fig. 22: Forma do recipiente – hexagonal

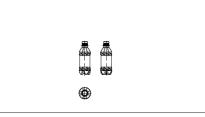
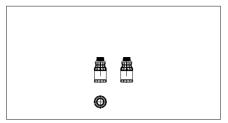



Fig. 23: Forma do recipiente – octogonal

Fig. 24: Forma do recipiente – poligonal

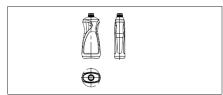
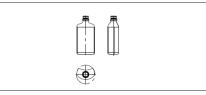



Fig. 25: Forma do recipiente – oval

Fig. 26: Forma do recipiente – reniforme

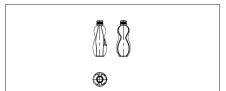


Fig. 27: Forma especial e outras

3.2.2 Desenho modelo – Exemplo

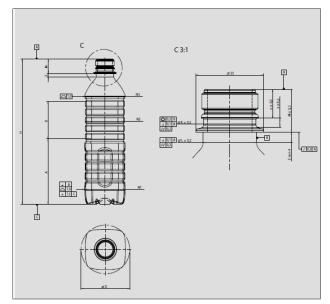


Fig. 28: Garrafa PET dimensionada(recipiente moldado)

// = Paralelismo plano

Ø G = Diâmetro do anel de suporte

Ø K = Diâmetro da ranhura da boca da garrafa

Ø L1 = Diâmetro do gargalo, início

Ø L2 = Diâmetro do gargalo, fim

Ø D = Diâmetro exterior do recipiente

Ø D = Diâmetro interior do recipiente

H = Altura do recipiente

E = Altura do gargalo, anel de suporte

C = Altura da área do gargalo, fim

B = Altura da área de rotulagem

A = Altura da área de rotulagem, fim

∩ = Forma linear

M = Altura da boca da garrafa

_ = retitude

T1 - T3 = Engates

S = Altura da ranhura da boca da garrafa Rh, raio na passagem do gargalo

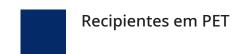
Rv = Raio do anel de fecho

Rt = Raio no anel de suporte

3.2.3 Forma/geometria e estabilidade dimensional

Alturas, diâmetro do recipiente e da rotuladora

Volume nominal [l]			Diâmetro exterior do recipiente D, diâmetro interior do recipiente N [mm]
acima de	até	Desvio permitido [mm]	
0	0,5	± 0,8	± 0,4
0,5	1,0	± 1,0	± 0,6
1,0		± 1,3	-0,7 +0,8


As tolerâncias indicadas são relativas a um recipiente não cheio.

O diâmetro do recipiente tem de ser, no mínimo, de 45 mm. No caso de excedimento do diâmetro de um recipiente > 108 mm é necessário contatar a KRONES, para se poder garantir a processabilidade nas estrelas de manipulação pelo gargalo e nas eliminações.

Na área da tecnologia de enchimento, podem ser processadas as seguintes alturas de recipientes PET para todas as aplicações exceto para a asséptica:

- ≥ 150 mm (altura mínima do recipiente PET)
- ≤ 350 mm (altura máxima do recipiente PET)

medido respectivamente do canto superior do bocal do recipiente até ao canto inferior do fundo do recipiente. O intervalo entre o recipiente menor e o recipiente maior não pode exceder os 200 mm de diferença de altura.

Se a altura mínima ou máxima do recipiente for excedida, é possível verificar construtivamente o processamento até aos seguintes valores em casos isolados:

- ≤ 370 mm ou
- ≥ 105 mm (para PET descartável na manipulação pelo gargalo) ou
- ≥ 140 mm (PET retornável no sistema de manipulação pelo fundo)

Fora destes valores a processabilidade não está garantida.

Geometria do gargalo e boca da garrafa

Para o dimensionamento da guia do gargalo é necessário indicar o início do gargalo (medida C) e a altura do gargalo (medida E).

Altura do gargalo E [mm]	Desvio permitido [mm]
< 4	não permitido
> 4	+ 0,3

É necessário entrar em contato com a KRONES no caso de excedimento destas tolerâncias na área do gargalo e da boca da garrafa.

Antes da utilização de insersores de clipe é necessário entrar em contato com o departamento técnico da tecnologia de embalamento.

No caso de utilização de outras bocas da garrafa (outras alturas, outros diâmetros do anel de suporte) é necessário uma verificação da processabilidade combinada pela KRONES.

Diâmetro guia

O diâmetro guia do recipiente tem de ser sempre o diâmetro maior no recipiente, mesmo quando esgotadas todas as tolerâncias. O recipiente necessita de um diâmetro guia constante. A altura deste diâmetro guia tem de estar entre 40 – 50 mm. Com encargos especiais, este também pode estar na altura entre 30 – 40 mm. (É suficiente quando em uma área de 10 mm existe pelo menos um ponto de conexão com o diâmetro máximo do recipiente.)

Em caso de desvio das especificações, é necessário entrar em contato com o departamento técnico da tecnologia de embalamento.

Paralelismo plano

Observar "Paralelismo plano" no cap. 3.2.2 Desenho modelo – Exemplo [▶ 21]

		Desvio permitido do
acima de	até	paralelismo plano [mm]
-	40	2 % do diâmetro
40	50	0,9

Perpendicularidade

Observar "Perpendicularidade" no cap. 3.2.2 Desenho modelo - Exemplo [▶ 21]

		Desvio permitido dos eixos da
acima de	até	perpendicularidade [mm]
0	1,5	± 3,0

		Desvio permitido dos eixos da
acima de	até	perpendicularidade [mm]
1,5	2,5	± 4,0
2,5		± 5,0

Retitude/forma linear

Na área de rotulagem, a retitude e a forma linear não podem divergir mais do que 0,3 mm do estado ideal do recipiente.

Requisitos adicionais para a forma do recipiente e capacidade de transporte

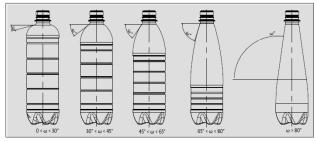


Fig. 29: Tipos de recipientes

Forma do recipiente e capacidade de transporte

A capacidade de transporte de recipientes em um transportador pneumático ou máquina empacotadora depende consideravelmente da forma do recipiente, caracterizado especialmente pelo ângulo do ombro ω . É feita a distinção entre as seguintes áreas:

Ângulo do ombro ω [°]		Capacidade de transporte
acima de	até	
0	30	muito limitado
30	45	Воа
45	65	muito bom
65	80	limitado
80		muito limitado

Tab. 3: Em relação a um transportador pneumático:

Ângulo do ombro ω [°]		Processabilidade
acima de	até	
0	30	Liberação especial + Teste com dispositivo de inserção de divisórias
0	30	Liberação especial com insersores de clipe
80		Embalagens de encolhimento visualmente deficientes
80		Liberação especial com embalagens Wraparound

Tab. 4: Em relação a uma máquina empacotadora Variopac/Varioline:

Pessoa de contato: Departamento técnico da tecnologia de embalamento

No caso de ângulos de ombro ω < 0° ou ω > 65° é necessário entrar em contato com a KRONES.

Dependendo do ângulo do ombro ω o raio do gargalo Rh e a altura do gargalo E têm de corresponder aos seguintes valores mínimos:

Ângulo do ombro ω [°]		Raio do gargalo Rh [mm]	Altura do gargalo E [mm]
acima de	até		
	20	não permitido	
20	25	> 1,0	
25	35	> 1,0 > 5,0	

23

Ângulo do ombro ω [°]		Raio do gargalo Rh [mm]	Altura do gargalo E [mm]
acima de	até		
35		> 1,0	> 4,5
35		> 1,5	> 4,0

Raio do canto

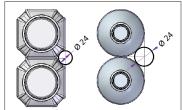


Fig. 30: Raio do canto

Para a processabilidade de recipientes na máquina empacotadora Variopac o raio do canto tem de ser executado como no esboço. Caso contrário, entrar em contato com o departamento técnico da tecnologia de embalamento.

Estabilidade

Especialmente no caso de recipientes leves, é necessário ter atenção a uma estabilidade suficiente dos recipientes vazios e cheios. Mesmo com a atuação de forças laterais o recipiente não pode ter grandes deformações.

Termo estabilidade

Os seguintes desvios dimensionais porcentuais das dimensões nominais são permitidos para os recipientes fechados, cheios de água carbonatada $(8,0 - 0,5 + 0 \text{ g/l CO}_2)$ após armazenamento de 24 h a 38°C (qualquer umidade do ar). Processamento posterior de recipientes com parada da máquina: Devido às alterações da dimensão dos recipientes, não é possível um processamento posterior após > 30 minutos, ou é apenas de forma muito limitada. Isso se aplica a todo o ramal da instalação. Esta especificação não é válida para as cavidades para agarrar, entre outros.

Volume nominal [l]			Diâmetro exterior do recipiente D, diâmetro interior do recipiente N
acima de	até	Desvio permitido [%]	
0	1,5	3,0	4,0
1,5		3,5	5,0

Engates

Dimensões T1, T2, T3	Dimensão mínima
T1, T3	10 mm
T2	8 mm

Os engates têm de estar confeccionados de modo a que duas garrafas não possam ficar pressas uma na outra.

Tensão de compressão axial (Top Load)

A medição da resistência vertical (Top Load) do recipiente vazio até que quebre (resistência máxima, 'peak load'). A velocidade de deslocamento do pistão deve ser de 510 mm/min, para garantir a comparabilidade de várias medições. Os recipientes têm de suportar no centro uma carga de k x 140 N.

Para um produto de enchimento sem gás as espessuras da parede do recipiente são geralmente menores, o TopLoad para estas aplicações é reduzido. Assim, os recipientes têm de suportar no centro uma carga de k x 90 N, onde o fator k é calculado do seguinte modo:

Produto de enchimento carbonatado	Top Load = k x 140 N	
Produto de enchimento sem gás	Top Load = k x 90 N	
Cálculo k	k = Peso da garrafa de amostra – peso da boca da garra	
		Peso da pré-forma segundo tabela – 6 g

Outros requisitos

- Nos recipientes PET com produto de enchimento com CO₂ deve ser indicada a temperatura ambiente.
- No caso de rótulos de segurança com as dimensões E + altura boca da garrafa M < 40 mm é necessário entrar em contato com a divisão de tecnologia de rotulagem.</p>
- A geometria de um recipiente PET tem de ser informada à KRONES antes e depois do enchimento do mesmo, para que as peças de formato para recipientes possam ser adaptadas de forma correspondente!

Fatores de influência sobre o nível de enchimento:

- Tipo de enchedora, rendimento, geometria do gargalo da garrafa, passo da máquina, tamanho da estrela de saída e da estrela da tampadora, carbonatação ou droppler de nitrogênio, formação de inchaços no processo de encolhimento
- Os requisitos relativos ao nível de enchimento são muito heterogêneos nas diferentes máquinas, ou seja, o nível de enchimento tem de ser tão elevado quanto possível e tão baixo quanto necessário. Para isso, deve se atentar a um nível de enchimento equilibrado.

Adesividade

Segundo o método de medição "Medição da adesividade KRONES", a adesividade das pré-formas/garrafas PET não pode ultrapassar os seguintes valores:

- Pré-forma 5 N
- Garrafas 15 N

Os resíduos nos recipientes não podem influenciar negativamente o comportamento de desenrolamento. Tem de estar excluída uma aglutinação das garrafas.

Molde de fundo

Cada superfície de contato individual (pegada) do recipiente tem de apresentar um diâmetro de ≥ 6 mm.

Se a superfície de contato for < 6 mm, não é possível o processamento no túnel de encolhimento.

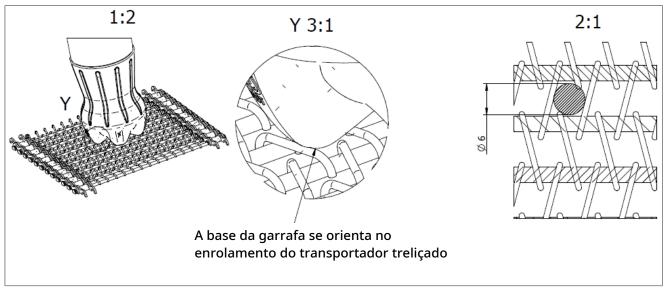


Fig. 31: Característica da superfície de contato

Definição de adesividade: Veja especificação das pré-formas, folha adicional adesividade

26

4 Recipiente de plástico (sem PET)

4.1 Recipientes cilíndricos rotacionalmente simétricos

4.1.1 Desenho modelo – Exemplo 1

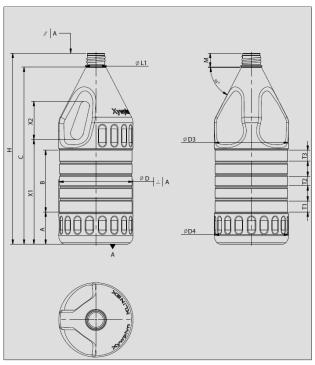


Fig. 32: Exemplo: Recipiente de plástico (1)

// = Paralelismo plano

Ø L1 = Diâmetro do gargalo, início

H = Altura do recipiente

C = Altura da área do gargalo, fim

X1 = Altura da alça

X2 = Altura da área de agarre da alça

B = Altura da área de rotulagem

A = Altura da área de rotulagem, fim

 \perp = Perpendicularidade

M = Altura da boca da garrafa

 ω ° = Ângulo do ombro

Ø D3/D4 = Diâmetro do recipiente

Ø D = Diâmetro do recipiente

T1 - T3 = Engates

27

4.1.2 Desenho modelo – Exemplo 2

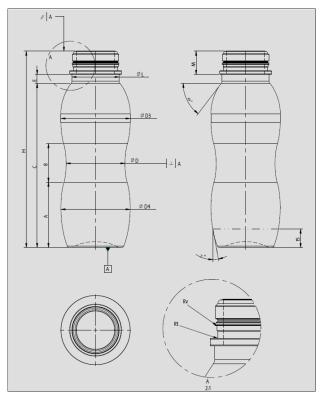


Fig. 33: Exemplo: Recipiente de plástico (2)

// = Paralelismo plano

Ø L1 = Diâmetro do gargalo, início

Ø L2 = Diâmetro do gargalo, fim

Ø D = Diâmetro do recipiente

Ø D3 = Diâmetro do recipiente

Ø D4 = Diâmetro do recipiente

 \perp = Perpendicularidade

H = Altura do recipiente

E = Altura do gargalo, anel de suporte

C = Altura da área do gargalo, fim

B = Altura da área de rotulagem

A = Altura da área de rotulagem, fim

M = Altura da boca da garrafa

 ω ° = Ângulo do ombro

R3 – R6 = Raios do recipiente relevantes

Y° = Ângulo de regeneração do fundo

Rv = Raio do anel de fecho

Rt = Raio no anel de suporte

4.1.3 Forma/geometria e estabilidade dimensional

Alturas, diâmetro do recipiente e da rotuladora

Volume nominal [l]		Altura H [mm]	Diâmetro do recipiente D, D3, D4 [mm]
acima de	até		
0	0,5	± 0,8	± 0,4
0,5	1,0	± 1,0	± 0,6
1,0	1,5	± 1,0	-0,7 +0,8
1,5	2,5	± 1,3	-0,7 +0,8
2,5		± 1,3	-0,7 +0,8

Geometria do gargalo e boca da garrafa

Para o dimensionamento da guia do gargalo é necessário indicar o início do gargalo (medida C) e a altura do gargalo (medida E).

Denominação	Medida	Desvio permitido [mm]
Diâmetro do gargalo - Início	Ø L1	+ 0,2
Diâmetro do gargalo - Fim	Ø L2	+ 0,2

Paralelismo plano

Observar "Paralelismo plano" no cap. 4.1.1 Desenho modelo – Exemplo 1 [▶ 27]

Recipiente de plástico (sem PET)

		Desvio permitido do
acima de	até	paralelismo plano [mm]
-	40	2 % do diâmetro
40	50	0,9

Perpendicularidade

Observar "Perpendicularidade" no cap. 4.1.1 Desenho modelo - Exemplo 1 [▶ 27]

		Desvio permitido dos eixos da
acima de	até	perpendicularidade [mm]
0	1,5	+ 2,0
1		+ 3,0

Requisitos adicionais

Estabilidade

Especialmente no caso de recipientes leves, é necessário ter atenção a uma estabilidade suficiente dos recipientes vazios e cheios. Mesmo com a atuação de forças laterais o recipiente não pode ter grandes deformações.

Engates

Dimensões T1, T2, T3	Dimensão mínima	
T1, T3	10 mm	
T2	8 mm	

Os engates têm de estar confeccionados de modo a que duas garrafas não possam ficar pressas uma na outra.

Tensão de compressão axial (Top Load)

Relativamente à Top Load o valor mínimo 120 N tem de ser alcançado com recipientes vazios e cheios. No caso de uma Top Load reduzida é sempre necessário entrar em contato com a KRONES!

Estrutura da superfície

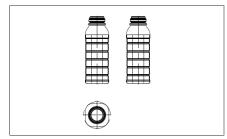
Os resíduos que existirem como consequência do processo de fabricação de recipientes, têm de ser do conhecimento da KRONES.

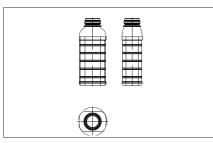
Se os recipientes não forem passados pela chama, é necessário usar cola especial. Outras desvantagens são sujidade, respingos de cola, etc. Além disso, se formam fios de cola com o aumento do rendimento da máquina.

Para além disso, é necessário apurar através de tentativas que cilindros de cola e paletes (emparelhamento) podem ser usados.

Outros requisitos

A geometria de um recipiente HDPE tem de ser informada à KRONES antes e depois do enchimento de um recipiente, para que as peças de formato para recipientes possam ser adaptadas de forma correspondente!




4.2 Recipientes não rotacionalmente simétricos (recipientes moldados)

4.2.1 Matriz de visão global

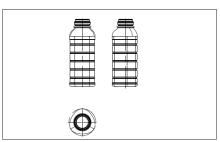
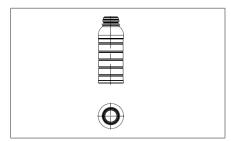
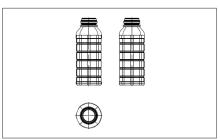

A seguinte visão global representa esquematicamente os vários recipientes moldados

Fig. 34: Forma do recipiente – quadrada

Fig. 35: Forma do recipiente – retangular

Fig. 36: Forma do recipiente – triangular

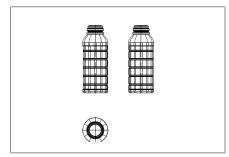

Fig. 37: Forma do recipiente – circular

Fig. 38: Forma do recipiente – hexagonal

Fig. 39: Forma do recipiente – octogonal

Fig. 40: Forma do recipiente – poligonal

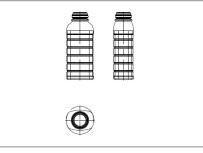
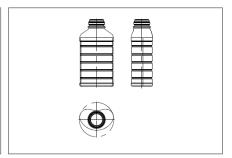



Fig. 41: Forma do recipiente – oval

Fig. 42: Forma do recipiente – reniforme

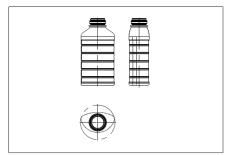


Fig. 43: Forma especial e outras

30

4.2.2 Desenho modelo – Exemplo 1

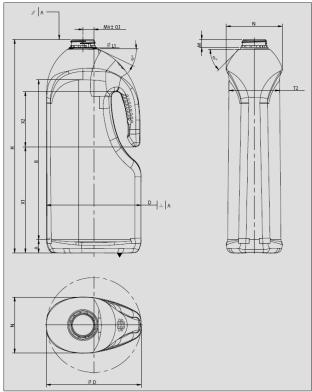


Fig. 44: Exemplo: Recipiente de plástico (3, recipiente moldado)

// = Paralelismo plano

Mv = Deslocamento da boca da garrafa para o centro do recipiente

Ø L1 = Diâmetro do gargalo, início

Ra = Raio do ombro Vista frontal

Rb = Raio da alça

H = Altura do recipiente

X1 = Altura da alça

X2 = Altura da área de agarre da alça

B = Altura da área de rotulagem

A = Altura da área de rotulagem, fim

 \perp = Perpendicularidade

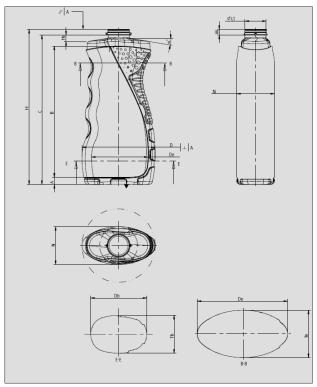
Rc = Raio externo

Rd = Raio interior da cavidade

M = Altura da boca da garrafa

Rf = Raio do ombro Vista lateral

 ω ° = Ângulo do ombro


T2 = Engates

Ra - Rf = Raios de recipiente relevantes

Ø D = Diâmetro exterior do recipiente relevante

4.2.3 Desenho modelo - Exemplo 2

Fig. 45: Exemplo: Recipiente de plástico (4, recipiente moldado)

// = Paralelismo plano

H = Altura do recipiente

C = Altura da área do gargalo, fim

Hs = Altura do ombro

B = Altura da área de rotulagem

A = Altura da área de rotulagem, fim

 ω ° = Ângulo do ombro

 \perp = Perpendicularidade

Ø D = Diâmetro exterior do recipiente

Da – De = Comprimentos de recipiente relevantes

Ø K = Diâmetro da ranhura da boca da garrafa

M = Altura da boca da garrafa

Ø L1 = Diâmetro do gargalo, início

T – Te = Larguras de recipiente relevantes

4.2.4 Forma/geometria e estabilidade dimensional

Alturas e diâmetro dos recipientes

Volume nominal [l]		Altura H [mm]	Diâmetro exterior do recipiente D,
acima de	até		diâmetro interior do recipiente N
0	0,5	± 0,8	± 0,4
0,5	1,0	± 1,0	± 0,6
1,0	1,5	± 1,0	-0,7 +0,8
1,5	2,5	± 1,3	-0,7 +0,8
2,5		± 1,3	-0,7 +0,8

Geometria do gargalo

Para o dimensionamento da guia do gargalo é necessário indicar o início do gargalo (medida C) e a altura do gargalo (medida E).

Denominação	Medida	Desvio permitido [mm]
Diâmetro do gargalo - Início	Ø L1	+ 0,2
Diâmetro do gargalo - Fim	Ø L2	+ 0,2

Paralelismo plano

Observar "Paralelismo plano" no cap. 4.2.2 Desenho modelo – Exemplo 1 [▶ 31]

Recipiente de plástico (sem PET)

Diâmetro da ranhura da boca da garrafa K		Desvio permitido do
acima de	até	paralelismo plano [mm]
-	40	2 % do diâmetro
40	50	0,9

Perpendicularidade

Observar "Perpendicularidade" no cap. 4.2.2 Desenho modelo - Exemplo 1 [▶ 31]

		Desvio permitido dos eixos da
acima de	até	perpendicularidade [mm]
0	1	+ 2,0
1		+ 3,0

Requisitos adicionais

Estabilidade

Especialmente no caso de recipientes leves, é necessário ter atenção a uma estabilidade suficiente dos recipientes vazios e cheios. Mesmo com a atuação de forças laterais o recipiente não pode ter grandes deformações.

Engates

Dimensões T1, T2, T3	Dimensão mínima
T1, T3	10 mm
T2	8 mm

Os engates têm de estar confeccionados de modo a que duas garrafas não possam ficar pressas uma na outra.

Tensão de compressão axial (Top Load)

Relativamente à Top Load o valor mínimo 120 N tem de ser alcançado com recipientes vazios e cheios. No caso de uma Top Load reduzida é sempre necessário entrar em contato com a KRONES!

Estrutura da superfície

Os resíduos que existirem como consequência do processo de fabricação de recipientes, têm de ser do conhecimento da KRONES.

Se os recipientes não forem passados pela chama, é necessário usar cola especial. Outras desvantagens são sujidade, respingos de cola, etc. Além disso, se formam fios de cola com o aumento do rendimento da máquina.

Para além disso, é necessário apurar através de tentativas que cilindros de cola e paletes (emparelhamento) podem ser usados.

Outros requisitos

A geometria de um recipiente HDPE tem de ser informada à KRONES antes e depois do enchimento de um recipiente, para que as peças de formato para recipientes possam ser adaptadas de forma correspondente!

Recipiente de plástico (sem PET)

Se existir um deslocamento da boca da garrafa para o centro do recipiente (Mv) é necessário indicar o deslocamento em mm. Para tal, observar a medida "Mv" no cap. 4.2.2 Desenho modelo – Exemplo 1 [> 31].

5 Latas

5.1 Recipientes cilíndricos rotacionalmente simétricos

5.1.1 Desenho modelo – Exemplo 1a Latas fechadas

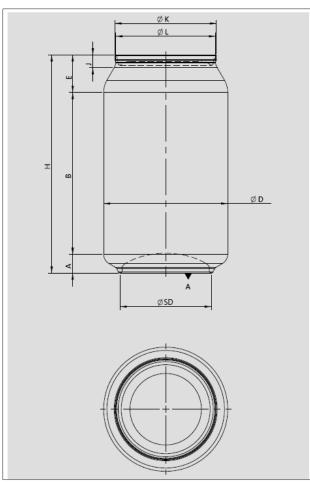


Fig. 46: Exemplo: Lata (fechada)

Ø K = Diâmetro do rebordo

Ø L = Diâmetro do bocal

H = Altura do recipiente

E = Altura da área do gargalo

J = Altura da aba rebordada

B = Altura da área de rotulagem

A = Altura da área de rotulagem, fim

/O/= Forma cilíndrica

Ø D = Diâmetro do recipiente

Ø SD = Diâmetro do apoio

∩ = Forma linear

R1 – R4 = Raios de lata relevantes

5.1.2 Desenho modelo – Exemplo 1b Latas abertas

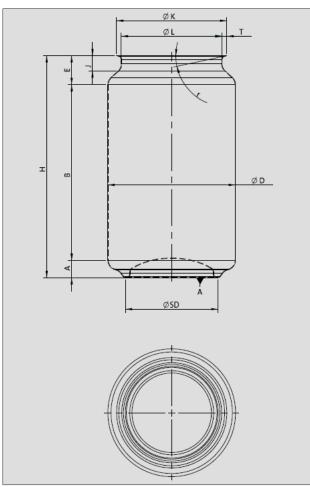


Fig. 47: Exemplo: Lata (aberta)

Ø K = Diâmetro do rebordo

Ø L = Diâmetro do bocal

T = Largura do bordo rebordado

H = Altura do recipiente

E = Altura da área do gargalo

J = Altura da aba rebordada

B = Altura da área de rotulagem

A = Altura da área de rotulagem, fim

/O/ = Forma cilíndrica

Ø D = Diâmetro do recipiente

Ø SD = Diâmetro do apoio

∩ = Forma linear

R1 – R4 = Raios de lata relevantes

Latas

5.1.3 Desenho modelo – Exemplo 2a Latas de conserva fechadas

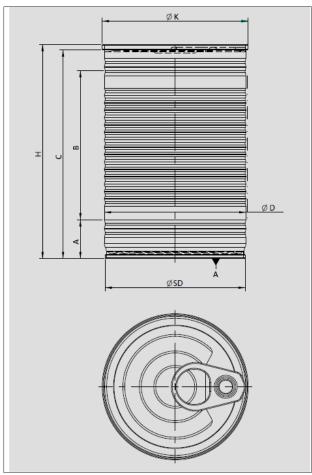


Fig. 48: Exemplo: Lata de conserva (fechada)

- Ø K = Diâmetro do rebordo
- H = Altura do recipiente
- C = Altura da área do gargalo, fim
- B = Altura da área de rotulagem
- A = Altura da área de rotulagem, fim
- /O/ = Forma cilíndrica
- Ø D = Diâmetro do recipiente
- Ø SD = Diâmetro do apoio
- ∩ = Forma linear

Latas

5.1.4 Desenho modelo – Exemplo 2b Latas de conserva fechadas

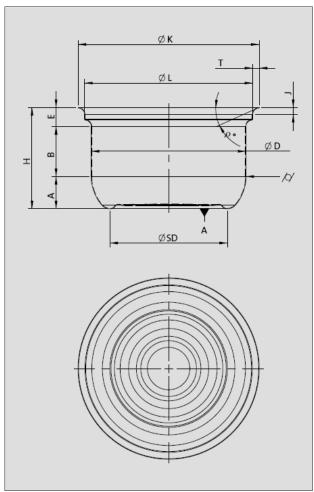


Fig. 49: Exemplo: Lata de conserva (fechada)

Ø K = Diâmetro do rebordo

Ø L = Diâmetro do bocal H

H = Altura do recipiente

E = Altura da área do gargalo

B = Altura da área de rotulagem

A = Altura da área de rotulagem, fim

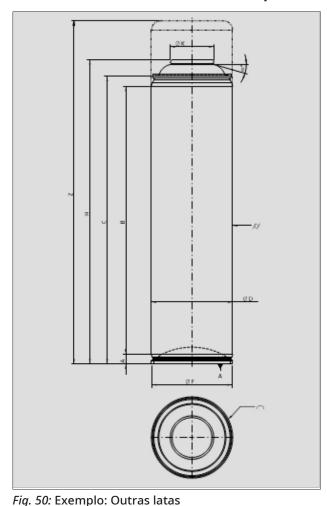
T = Largura do bordo rebordado

J = Altura da aba rebordada

P° = Ângulo do rebordo

Ø D = Diâmetro do recipiente

/O/ = Forma cilíndrica


Ø SD = Diâmetro do apoio

∩ = Forma linear

R1 - R2 = Raios de lata relevantes

5.1.5 Desenho modelo – Exemplo 3: Outras latas

Ø K = Diâmetro do rebordo

 Ω ° = Ângulo do ombro

Z = Altura do recipiente incl. tampa

H = Altura do recipiente

C = Altura da área do gargalo, fim

B = Altura da área de rotulagem

A = Altura da área de rotulagem, fim

/O/ = Forma cilíndrica

Ø D = Diâmetro do recipiente

Ø F = Diâmetro do apoio

∩ = Forma linear

5.1.6 Forma/geometria e estabilidade dimensional

Alt.

Volume nominal [l]		Medida	Desvio permitido [mm]
acima de	até		
0	3,0	Н	± 0,4

Para as latas se aplica:

A altura das latas tem de se encontrar dentro dos seguintes valores, para se poder assegurar a processabilidade na enchedora de latas, bem como na tampadora de latas:

- ≥ 87 mm: altura mínima das latas
- ≤ 250 mm: altura máxima das latas

medido respectivamente do canto superior do bocal da lata até ao canto inferior do fundo da lata.

Fora destes valores a processabilidade não está garantida. No caso de não alcance e/ou de excedimento destes valores das alturas das latas, é necessário entrar em contato com a KRONES.

Diâmetro do recipiente e dos rótulos

Volume nominal [l]		Medida	Desvio permitido [mm]
acima de	até		
0	3,0	Ø D	± 0,2
Denominação		Medida	Desvio permitido [mm]
Diâmetro do apoio		Ø F	± 0,3

Neste desvio está incluída a ovalidade. No caso de secções transversais ovais e angulares, aplica-se para a determinação respectivamente a medida da secção transversal do lado largo.

Para as latas se aplica:

O diâmetro das latas tem de se encontrar dentro dos seguintes valores, para se poder assegurar a processabilidade na enchedora de latas, bem como na tampadora de latas:

- ≥ 52 mm: diâmetro mínimo das latas
- ≤ 85 mm: diâmetro máximo das latas

medido respectivamente no diâmetro maior da lata.

Fora destes valores a processabilidade não está garantida. No caso de não alcance e/ou de excedimento destes valores dos diâmetros das latas, é necessário entrar em contato com a KRONES.

Geometria do gargalo/rebordo

Denominação	Medida	Desvio permitido [mm]
Diâmetro do rebordo	ØК	± 0,3
Largura do rebordo	Т	± 0,3
Altura do gargalo	E	± 0,3

Estrutura da superfície

A estrutura da superfície das latas tem de ser sempre indicada. São necessários os seguintes fatores:

- Pintura: sim (lisa ou mate e/ou com elementos táteis)/não
- Escovagem: sim (direção da escovagem)/não
- Co
- Para assegurar uma inspeção isenta de falhas, é necessário que a cor e o grau de brilho das superfícies seja uniforme e constante consoante o tipo de produção.
- A área do corpo da lata tem de apresentar uma camada de tinta contínua.

Requisitos mecânicos gerais

- A lata tem de aguentar uma pressão interior de no mínimo 6,2 bar.
- A lata vazia tem de aguentar uma força axial de no mínimo 800 N.
 As latas com valores Top Load > 675 N e < 800 N são definidas como latas "Lightweight" e só podem ser assumidas após liberação individual.</p>

As latas com um Top Load < 675 N não podem ser processadas.

Requisitos para processos de pasteurização

O objeto do cliente (lata, tampa e tintas, bem como revestimento interior) tem de ser adequado para passar os passos necessários para o processo de pasteurização sem influências negativos sobre a geometria ou o conteúdo.

Latas

- Isso afeta especialmente as propriedades da água (valores de pH, ingredientes), agentes desinfetantes utilizados, temperatura, resistência à pressão (no mínimo 6,2 bar ou adaptada à pressão de saturação do produto final com as temperaturas de pasteurização necessárias individualmente) e duração.
- A base para os requisitos é formada pelas especificações predefinidas pela KRONES e valores limite para a água de processamento. Uma exceção para tal é o valor de pH. Divergente das especificações atuais da água de processamento, os pasteurizadores para latas são operados normalmente com um valor de pH ligeiramente ácido (pH 6-7).
- A área superior da lata tem de ser no mínimo de 4 % do volume nominal.
- É vivamente recomendada uma aba pintada para evitar a ocorrência de escuridão na fonte.

Outros requisitos

- Para um processamento sem problemas, a altura H e o diâmetro D não podem exceder as tolerâncias durante todo o processo de enchimento e de embalamento! (Caso contrário, devem ser esperadas falhas, entre outros, na enxaguadora, virador de latas e outros componentes dependentes do formato.)
- Se o diâmetro do rebordo K ou o diâmetro do bocal L for > que o diâmetro D, é necessário emitir uma informação separada (eventualmente problemas/danos na área das latas vazias e/ou aumento de latas na área das latas cheias).
- As latas têm de ser resistentes à corrosão.
- O tipo de material (alumínio ou folha de flandres) tem de ser indicado.
- A massa da lata vazia incl. indicações de tolerância (em gramas) tem de ser indicada.
- O fabricante e a designação do tipo específica do fabricante têm de ser indicados.
- O tipo/designação do revestimento interior tem de ser indicado(a).
 O revestimento interior tem de ser adequado para o produto a encher e não pode reagir com este de forma alguma (por exemplo, formação de espuma, reação ao oxigênio, reação ao ar, turbulências).
- O fundo da lata tem de apresentar uma camada de tinta intacta e homogênea em todo o anel de suporte, para possibilitar propriedades de deslizamento suficientes.

A tinta do fundo parcialmente ou totalmente em falta tem efeitos sobre o manuseio de recipientes e pode provocar uma elevada perda de produto, danos e riscos no recipiente, bem como uma elevada concentração/consumo de lubrificante para transportadores.

6 Geometria dos cames

No perímetro do recipiente do came não pode ser aplicada uma inscrição ou um relevo.

6.1 Cames da parede lateral

6.1.1 Cames da parede lateral negativos (profundos)

As tolerâncias para os cames da parede lateral devem ser consultadas no desenho esquemático seguinte. As dimensões indicadas são necessárias para poder colocar os cames de centragem da máquina.

Denominação	Medida	Desvio permitido [mm]
Início do came sobre o fundo	NBH	-
Largura do came	NB	+ 0,5
Altura do came	NH	+ 0,5
Profundidade do came	NT	+ 0,5
Raio da cabeça do came	Ra	- 0,3
Raio da base do came	Rb	- 0,3
Raio externo	Rc	- 0,3
Raio interior da cavidade	Rd	- 0,3
Ângulo de inclinação do came	δ	+ 2°
Ângulo de inclinação da cavidade	φ	+ 2°

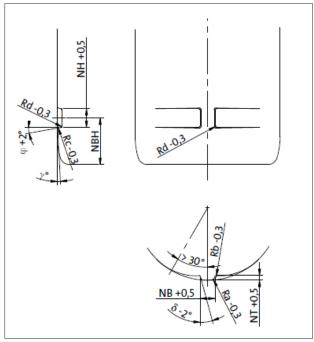


Fig. 51: Came de parede lateral (negativo) profundo dimensionado

O sentido de funcionamento da máquina depende da simetria dos cames da parede lateral. O início do came sobe o fundo(NBH) deve alcançar os 15 mm. No caso de contornos do fundo cônicos o ângulo y tem de alcançar o valor de 10°.

TD10026397 PT 02 6.1 Cames da parede lateral

6.1.2 Cames da parede lateral positivos (elevados)

As tolerâncias para os cames da parede lateral devem ser consultadas no desenho esquemático seguinte. As dimensões indicadas são necessárias para poder colocar os cames de centragem da máquina.

Denominação	Medida	Desvio permitido [mm]
Início do came sobre o fundo	NBH	-
Comprimento do came	NL	+ 0,5
Largura do came	NB	+ 0,5
Altura do came	NH	+ 0,5
Raio da cabeça do came	Ra	- 0,3
Raio da base do came	Rb	- 0,3
Raio da cabeça do came	Rc	- 0,3
Raio da base do came	Rd	- 0,3
Ângulo de inclinação Largura do came	δ	+ 1°
Ângulo de inclinação Comprimento do came	φ	+ 2°

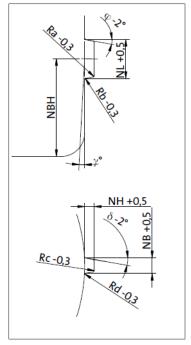


Fig. 52: Came de parede lateral (positivo) elevado dimensionado

O início do came sobe o fundo(NBH) deve alcançar os 15 mm. No caso de contornos do fundo cônicos o ângulo γ tem de alcançar o valor de 10° .

6.2 Cames do fundo para recipientes de vidro

As tolerâncias para os cames do fundo devem ser consultadas no desenho esquemático seguinte. As dimensões indicadas são necessárias para poder colocar os cames de centragem da máquina.

Denominação	Medida	Desvio permitido [mm]
Altura do came	NH	+ 0,5
Largura do came do lado de fora	Na	+ 0,5
Largura do came do lado de dentro	Ni	+ 0,5
Raio exterior do came	Ra	- 0,3

Geometria dos cames

Denominação	Medida	Desvio permitido [mm]
Raio lateral do came	Rb	- 0,3
Raio interior do came	Rc	- 0,3
Ângulo de inclinação Largura do came	δ	+ 1°

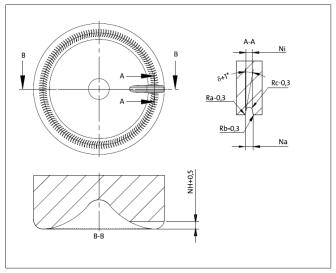


Fig. 53: Came do fundo dimensionado Recipiente de vidro

6.3 Cames do fundo para recipientes de plástico

As tolerâncias para os cames do fundo devem ser consultadas no desenho esquemático seguinte. As dimensões indicadas são necessárias para poder colocar os cames de centragem da máquina

Denominação	Medida	Desvio permitido [mm]
Comprimento do came	NL	+ 0,5
Largura do came	NB	+ 0,5
Altura do came	NH	+ 0,5
Excentricidade do came	NE	± 0,2
Raio exterior do came	Ra	- 0,3
Raio interior do came	Rb	- 0,3
Raio lateral do came	Rc	- 0,3
Ângulo de inclinação Largura do came	δ	+ 1°
Ângulo de inclinação Comprimento do came	φ	+ 2°

Geometria dos cames

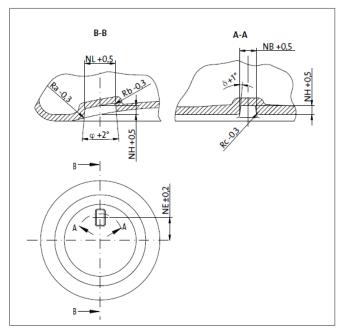


Fig. 54: Came do fundo dimensionado Recipiente de plástico